Jump to content

Recommended Posts

Posted
Supra coders are Airmen and Guardians who develop, manage, and design software for the U.S. Space Force. These individuals serve in a variety of specialties. Once they complete the Software Development Immersive (SDI) class, a software development boot camp that teaches full-stack JavaScript development and application deployment, they return to their bases to begin developing applications and solutions.
U.S. Air Force Tech. Sgt. Urich Garcia, 45th Security Forces Squadron supra coder, writes code in an application, April 25, 2022, at Patrick Space Force Base, Fla. Supra coders are Airmen and Guardians who perform duties developing, managing, and designing software for the United States Space Force.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Researchers in the Verification and Validation Lab at NASA’s Ames Research Center in California’s Silicon Valley monitor a simulated drone’s flight path during a test of the FUSE demonstration.NASA/Brandon Torres Navarrete Through an ongoing collaboration, NASA and the Department of War are working to advance the future of modern drones to support long distance cargo transportation that could increase efficiency, reduce human workload, and enhance safety.  
      Researchers from NASA’s Ames Research Center in California’s Silicon Valley recently participated in a live flight demonstration showcasing how drones can successfully fly without their operators being able to see them, a concept known as beyond visual line of sight (BVLOS).  
      Cargo drones, a type of Unmanned Aerial Systems (UAS), carried various payloads more than 75 miles across North Dakota, between Grand Forks Air Force Base and Cavalier Space Force Station. This demonstration was conducted as part of the War Department’s UAS Logistics, Traffic, Research, and Autonomy (ULTRA) effort. 
      NASA’s UAS Service Supplier (USS) technology helped to demonstrate that cargo drones could operate safely even in complex, shared airspace. During the tests, flight data including location, altitude, and other critical data were transmitted live to the NASA system, ensuring full situational awareness throughout the demonstration. 
      Terrence Lewis and Sheryl Jurcak, members of the FUSE project team at NASA Ames, discuss the monitoring efforts of the FUSE demonstration at the Airspace Operations Lab. NASA/Brandon Torres Navarrete The collaboration between NASA and the Department of War is known as the Federal USS Synthesis Effort (FUSE). The demonstration allowed FUSE researchers to test real-time tracking, situational awareness, and other factors important to safely integrating of drone traffic management into U.S. national airspace. The FUSE work marks an important step towards routine, scalable autonomous cargo drone operations and broader use for future military logistics. 
      “NASA and the Department of War have a long and storied partnership, collaborating with one another to contribute to continued advancement of shared American ideals,” said Todd Ericson, senior advisor to the NASA administrator. “FUSE builds upon our interagency cooperation to contribute enhanced capabilities for drones flying beyond the visual line of sight. This mission is the next big step toward true autonomous flight and will yield valuable insights that we can leverage as both the commercial drone, cargo and urban air taxi industries continue to expand and innovate. As always, safety is of paramount importance at NASA, and we are working with our partners at the FAA and Department of Transportation to ensure we regulate this appropriately.” 
      Autonomous and semi-autonomous drones could potentially support a broad range of tasks for commercial, military, and private users. They could transport critical medical supplies to remote locations, monitor wildfires from above, allow customers to receive deliveries directly in their backyards. NASA is researching technology to further develop the infrastructure needed for these operations to take place safely and effectively, without disrupting the existing U.S. airspace. 
      “This system is crucial for enabling safe, routine BVLOS operations,” said Terrence Lewis, FUSE project manager at NASA Ames. “It ensures all stakeholders can see and respond to drone activity, which provides the operator with greater situational awareness.” 
      NASA Ames is collaborating on the FUSE project with the War Department’s Office of the Undersecretary of War for Acquisition and Sustainment. The NASA FUSE effort is also collaborating with ULTRA, a multi-entity partnership including the Office of the Secretary of War, the County of Grand Forks, the Northern Plains UAS Test Site, the Grand Sky Development, the Air Force Research Laboratory, and several other commercial partners, aiming to bolster capabilities within the National Airspace System. 
      Share
      Details
      Last Updated Sep 12, 2025 Related Terms
      Ames Research Center Aeronautics Aeronautics Research General Explore More
      5 min read NASA’s X-59 Moves Toward First Flight at Speed of Safety
      Article 5 minutes ago 1 min read Drag Prediction Workshop Series
      Article 8 hours ago 2 min read NASA Ames Science Directorate: Stars of the Month – September 2025
      Article 23 hours ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Library
      Scientific papers, industry forum presentations, and videos covering the concepts used in the digital information platform are available to the public. For those interested in a deeper understanding of the technical workings of DIP, please refer to these resources.
      Newsletters
      April 2025
      December 2024
      August 2024
      June 2024
      March 2024
      November 2023
      NASA Feature Stories
      NASA Partners With Airlines to Save Fuel, Reduce Flight Delays
      NASA Flight Rerouting Tool Curbs Delays, Emissions
      NASA Cloud-Based Platform Could Help Streamline, Improve Air Traffic
      NASA Machine Learning Air Traffic Software Saves Fuel
      Technical Papers
      View the Technical Papers
      Events
      View all the Events
      Fuser information from Airspace Technical Demonstration-2 industry day workshop
      Fuser Architecture Overview
      Video recordings of the presentations at the ATD-2 Industry Days
      Online Videos
      2023 Jan 21 – AIAA LA LV NASA’s Digital Information Platform DIP to Accelerate NAS Transformation
      DIP Collaborative Digital Departure Reroute Overview
      Digital Information Platform
      Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      1 min read DIP Events
      Article 11 minutes ago 1 min read DIP Request for Information (RFI) Information Session
      Article 11 minutes ago 2 min read DIP RFI Outbrief Session
      Article 12 minutes ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans In Space
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Jun 18, 2025 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related Terms
      Digital Information Platform Air Traffic Management – Exploration View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Boeing’s test plane simulates digital taxiing at Moffett Field at NASA’s Ames Research Center in California’s Silicon Valley. NASA/Brandon Torres Navarrete New technology tested by an industry partner at NASA’s Ames Research Center in California’s Silicon Valley could improve how commercial planes taxi to and from gates to runways, making operations safer and more efficient on the surfaces of airports.
      Airport taxiways are busy. Planes come and go while support vehicles provide maintenance, carry fuel, transport luggage, and more. Pilots must listen carefully to air traffic control when getting directions to the runway – and garbled communications and heavy workloads can cause issues that could lead to runway incursions or collisions.
      Researchers at Boeing are working to address these issues by digitizing taxiway information and automating aircraft taxi functions. The team traveled to NASA Ames to collaborate with researchers while testing their technology at the Moffett Federal Airfield and NASA’s FutureFlight Central, an air traffic control simulation facility.
      Doug Christensen, test engineer for Air Traffic Management eXploration (ATM-X) at NASA Ames, and Mike Klein, autonomy technical leader in product development at Boeing discuss the digital taxi test in Ames’s FutureFlight Central facility.NASA/Brandon Torres Navarrete To test these new technologies, Boeing brought a custom single-engine test plane to the airfield. Working from FutureFlight Central, their researchers developed simulated taxiway instructions and deployed them to the test pilot’s digital tablet and the autonomous system.
      Typically, taxiing requires verbal communication between an air traffic controller and a pilot. Boeing’s digital taxi release system displays visual turn-by-turn routes and directions directly on the pilot’s digital tablet.
      “This project with Boeing lends credibility to the research being done across Ames,” said Adam Yingling, autonomy researcher for the Air Traffic Management-eXploration (ATM-X) program at NASA Ames. “We have a unique capability with our proximity to Moffett and the work Ames researchers are doing to advance air traffic capabilities and technologies to support the future of our national airspace that opens the door to work alongside commercial operators like Boeing.”
      The team’s autonomous taxiing tests allowed its aircraft to follow the air traffic control’s digital instructions to transit to the runway without additional pilot inputs.
      Estela Buchmann, David Shapiro, and Maxim Mounier, members of the NASA Ames ATM-X project team, analyze results of Boeing’s digital taxi test at Ames’s FutureFlight Central facility.NASA/Brandon Torres Navarrete As commercial air travel increases and airspace gets busier, pilots and air traffic controllers have to manage heavier workloads. NASA is working with commercial partners to address those challenges through initiatives like its Air Traffic Management-eXploration project, which aims to transform air traffic management to accommodate new vehicles and air transportation options.
      “In order to increase the safety and efficiency of our airspace operations, NASA research in collaboration with industry can demonstrate how specific functions can be automated to chart the course for enhancing traffic management on the airport surface,” said Shivanjli Sharma, ATM-X project manager at Ames. 
      Share
      Details
      Last Updated May 22, 2025 Related Terms
      Ames Research Center Aeronautics Aeronautics Research Mission Directorate Air Traffic Control Labs Air Traffic Management – Exploration Air Traffic Solutions Drones & You FutureFlight Central Explore More
      3 min read Winners Announced in NASA’s 2025 Gateways to Blue Skies Competition
      Article 49 mins ago 5 min read NASA X-59’s Latest Testing Milestone: Simulating Flight from the Ground
      Article 6 days ago 5 min read NASA Satellite Images Could Provide Early Volcano Warnings 
      Article 7 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Space Force
      Senior military leaders, foreign military officers, and civic leaders gathered at Maxwell Air Force Base, Alabama, for the 2025 National Security Forum, held May 6–8, 2025.

      View the full article
    • By Space Force
      Senior military leaders, foreign military officers, and civic leaders gathered at Maxwell Air Force Base for the 2025 National Security Forum, held May 6–8, 2025.

      View the full article
  • Check out these Videos

×
×
  • Create New...