Jump to content

Recommended Posts

Posted
low_STScI-H-p1703a-k1340x520.png

Eerie mysteries in the universe can be betrayed by simple shadows. The wonder of a solar eclipse is produced by the moon's shadow, and over 1,000 planets around other stars have been cataloged by the shadow they cast when passing in front of their parent star. Astronomers were surprised to see a huge shadow sweeping across a disk of dust and gas encircling a nearby, young star. They have a bird's-eye view of the disk, because it is tilted face-on to Earth, and the shadow sweeps around the disk like the hands moving around a clock. But, unlike the hands of a clock, the shadow takes 16 years to make one rotation.

Hubble has 18 years' worth of observations of the star, called TW Hydrae. Therefore, astronomers could assemble a time-lapse movie of the shadow's rotation. Explaining it is another story. Astronomers think that an unseen planet in the disk is doing some heavy lifting by gravitationally pulling on material near the star and warping the inner part of the disk. The twisted, misaligned inner disk is casting its shadow across the surface of the outer disk. TW Hydrae resides 192 light-years away and is roughly 8 million years old.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      ESA/Hubble & NASA, M. J. Koss, A. J. Barth The light that the NASA/ESA Hubble Space Telescope collected to create this image reached the telescope after a journey of 250 million years. Its source was the spiral galaxy UGC 11397, which resides in the constellation Lyra (The Lyre). At first glance, UGC 11397 appears to be an average spiral galaxy: it sports two graceful spiral arms that are illuminated by stars and defined by dark, clumpy clouds of dust.
      What sets UGC 11397 apart from a typical spiral lies at its center, where a supermassive black hole containing 174 million times the mass of our Sun grows. As a black hole ensnares gas, dust, and even entire stars from its vicinity, this doomed matter heats up and puts on a fantastic cosmic light show.
      Material trapped by the black hole emits light from gamma rays to radio waves, and can brighten and fade without warning. But in some galaxies, including UGC 11397, thick clouds of dust hide much of this energetic activity from view in optical light. Despite this, UGC 11397’s actively growing black hole was revealed through its bright X-ray emission — high-energy light that can pierce the surrounding dust. This led astronomers to classify it as a Type 2 Seyfert galaxy, a category used for active galaxies whose central regions are hidden from view in visible light by a donut-shaped cloud of dust and gas.
      Using Hubble, researchers will study hundreds of galaxies that, like UGC 11397, harbor a supermassive black hole that is gaining mass. The Hubble observations will help researchers weigh nearby supermassive black holes, understand how black holes grew early in the universe’s history, and even study how stars form in the extreme environment found at the very center of a galaxy.
      Text credit: ESA
      Image credit: ESA/Hubble & NASA, M. J. Koss, A. J. Barth
      View the full article
    • By NASA
      2 min read
      Hubble Captures an Active Galactic Center
      This Hubble image shows the spiral galaxy UGC 11397. ESA/Hubble & NASA, M. J. Koss, A. J. Barth The light that the NASA/ESA Hubble Space Telescope collected to create this image reached the telescope after a journey of 250 million years. Its source was the spiral galaxy UGC 11397, which resides in the constellation Lyra (The Lyre). At first glance, UGC 11397 appears to be an average spiral galaxy: it sports two graceful spiral arms that are illuminated by stars and defined by dark, clumpy clouds of dust.
      What sets UGC 11397 apart from a typical spiral lies at its center, where a supermassive black hole containing 174 million times the mass of our Sun grows. As a black hole ensnares gas, dust, and even entire stars from its vicinity, this doomed matter heats up and puts on a fantastic cosmic light show.
      Material trapped by the black hole emits light from gamma rays to radio waves, and can brighten and fade without warning. But in some galaxies, including UGC 11397, thick clouds of dust hide much of this energetic activity from view in optical light. Despite this, UGC 11397’s actively growing black hole was revealed through its bright X-ray emission — high-energy light that can pierce the surrounding dust. This led astronomers to classify it as a Type 2 Seyfert galaxy, a category used for active galaxies whose central regions are hidden from view in visible light by a donut-shaped cloud of dust and gas.
      Using Hubble, researchers will study hundreds of galaxies that, like UGC 11397, harbor a supermassive black hole that is gaining mass. The Hubble observations will help researchers weigh nearby supermassive black holes, understand how black holes grew early in the universe’s history, and even study how stars form in the extreme environment found at the very center of a galaxy.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Jun 27, 2025 Related Terms
      Hubble Space Telescope Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Galaxies



      Galaxy Details and Mergers



      Hubble’s Night Sky Challenge


      View the full article
    • By NASA
      Explore This SectionScience Europa Clipper Source Region for Possible… Europa Clipper Home MissionOverview Facts History Timeline ScienceGoals Team SpacecraftMeet Europa Clipper Instruments Assembly Vault Plate Message in a Bottle NewsNews & Features Blog Newsroom Replay the Launch MultimediaFeatured Multimedia Resources About EuropaWhy Europa? Europa Up Close Ingredients for Life Evidence for an Ocean   A map centered at the estimated source region for potential plumes from Europa.NASA/JPL-Caltech/SETI Institute Downloads
      View All Europa Resources Hi-res
      May 29, 2025
      JPEG (2.71 MB)
      This reprojection of the official USGS Europa basemap is centered at the estimated source region for potential plumes that might have been detected using the Hubble Space Telescope. The view is centered at -65 degrees latitude, 183 degrees longitude.
      In addition to the plume source region, the image also shows the hemisphere of Europa that might be affected by plume deposits. This map is composed of images from NASA’s Galileo and Voyager missions. The black region near the south pole results from gaps in imaging coverage.
      Keep Exploring Discover More Topics From NASA
      Europa Clipper Resources
      Jupiter
      Jupiter Moons
      Science Missions
      View the full article
    • By European Space Agency
      Astronomers using the NASA/ESA/CSA James Webb Space Telescope have captured compelling evidence of a planet with a mass similar to Saturn orbiting the young nearby star TWA 7.
      If confirmed, this would represent Webb’s first direct image discovery of a planet, and the lightest planet ever seen with this technique.
      View the full article
    • By European Space Agency
      Video: 02:08:03 ESA’s Living Planet Symposium, one of the world’s leading Earth observation conferences, opened today in Vienna. The plenary session began at 10:30 CEST and included addresses from ESA Director General Josef Aschbacher and ESA Director of Earth Observation Programmes Simonetta Cheli, as well as Margit Mischkulnig, from the Austrian Federal Ministry for Innovation.
      There were video addresses from President of Austria, Alexander van der Bellen, Federal Minister for Innovation, Mobility and Infrastructure Republic of Austria Peter Hanke and the EU Commissioner for Defence and Space Andrius Kubilius. Representatives of the United Nations Office for Outer Space Affairs, ECMWF, IPCC, Eumetsat, Nordic Bildung and ETH Zurich also spoke during the opening session.
      The first images from Biomass, ESA’s forest mission, launched earlier this year, were also presented during the opening plenary.
      More than 6500 participants from almost 120 countries signed up to attend the event. With more than 4200 scientific presentations and posters, the symposium provides a forum and meeting point for scientists, academics and space industry representatives, as well as students and citizens.
      The Living Planet Symposium takes place every three years and this year the focus is ‘from observation to climate action and sustainability for Earth’. Held in the Austrian capital over five days from today to 27 June, participants can take part in discussions on how we can work together in the fields of Earth science and with the Earth observation industry to ensure robust data and promote effective climate action to address the environmental crisis, with presentations also on new trends in Earth observation.
      Watch more videos from the Living Planet Symposium 2025.
      View the full article
  • Check out these Videos

×
×
  • Create New...