Jump to content

Recommended Posts

Posted
RECAPP-2: analysing carbon budgets

With the climate crisis continuing to tighten its grip, nations around the world are making efforts to reduce emissions of climate warming gases. To track action, countries report their greenhouse gas emissions to the UNFCCC – the body responsible for driving global action to combat climate change. While accurate and consistent reporting is crucial, very few countries exploit Earth observation satellite data to check and improve their estimates. Scientists have now devised new ways of comparing national greenhouse gas inventories with independent measurements taken from space.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 Min Read NASA 3D Wind Measuring Laser Aims to Improve Forecasts from Air, Space
      3D wind measurements from NASA's Aerosol Wind Profiler instrument flying on board a specially mounted aircraft along the East Coast of the U.S. and across the Great Lakes region on Oct. 15, 2024. Credits: NASA/Scientific Visualization Studio Since last fall, NASA scientists have flown an advanced 3D Doppler wind lidar instrument across the United States to collect nearly 100 hours of data — including a flight through a hurricane. The goal? To demonstrate the unique capability of the Aerosol Wind Profiler (AWP) instrument to gather extremely precise measurements of wind direction, wind speed, and aerosol concentration – all crucial elements for accurate weather forecasting.
      Weather phenomena like severe thunderstorms and hurricanes develop rapidly, so improving predictions requires more accurate wind observations.
      “There is a lack of global wind measurements above Earth’s surface,” explained Kris Bedka, the AWP principal investigator at NASA’s Langley Research Center in Hampton, Virginia. “Winds are measured by commercial aircraft as they fly to their destinations and by weather balloons launched up to twice per day from just 1,300 sites across the globe. From space, winds are estimated by tracking cloud and water vapor movement from satellite images.”
      However, in areas without clouds or where water vapor patterns cannot be easily tracked, there are typically no reliable wind measurements. The AWP instrument seeks to fill these gaps with detailed 3D wind profiles.
      The AWP instrument (foreground) and HALO instrument (background) was integrated onto the floorboard of NASA’s G-III aircraft. Kris Bedka, project principal investigator, sitting in the rear of the plane, monitored the data during a flight on Sept. 26, 2024. NASA/Maurice Cross Mounted to an aircraft with viewing ports underneath it, AWP emits 200 laser energy pulses per second that scatter and reflect off aerosol particles — such as pollution, dust, smoke, sea salt, and clouds — in the air. Aerosol and cloud particle movement causes the laser pulse wavelength to change, a concept known as the Doppler effect.
      The AWP instrument sends these pulses in two directions, oriented 90 degrees apart from each other. Combined, they create a 3D profile of wind vectors, representing both wind speed and direction.
      We are measuring winds at different altitudes in the atmosphere simultaneously with extremely high detail and accuracy.
      Kris bedka
      NASA Research Physical Scientist
      “The Aerosol Wind Profiler is able to measure wind speed and direction, but not just at one given point,” Bedka said. “Instead, we are measuring winds at different altitudes in the atmosphere simultaneously with extremely high detail and accuracy.”
      Vectors help researchers and meteorologists understand the weather, so AWP’s measurements could significantly advance weather modeling and forecasting. For this reason, the instrument was chosen to be part of the National Oceanic and Atmospheric Administration’s (NOAA) Joint Venture Program, which seeks data from new technologies that can fill gaps in current weather forecasting systems. NASA’s Weather Program also saw mutual benefit in NOAA’s investments and provided additional support to increase the return on investment for both agencies.
      On board NASA’s Gulfstream III (G-III) aircraft, AWP was paired with the agency’s High-Altitude Lidar Observatory (HALO) that measures water vapor, aerosols, and cloud properties through a combined differential absorption and high spectral resolution lidar.
      Working together for the first time, AWP measured winds, HALO collected water vapor and aerosol data, and NOAA dropsondes (small instruments dropped from a tube in the bottom of the aircraft) gathered temperature, water vapor, and wind data.
      The AWP and HALO instrument teams observing incoming data on board NASA’s G-III aircraft over Tennessee while heading south to observe Hurricane Helene. Sept. 26, 2024. NASA/Maurice Cross “With our instrument package on board small, affordable-to-operate aircraft, we have a very powerful capability,” said Bedka. “The combination of AWP and HALO is NASA’s next-generation airborne weather remote sensing package, which we hope to also fly aboard satellites to benefit everyone across the globe.”
      The combination of AWP and HALO is NASA's next-generation airborne weather remote sensing package.
      kris bedka
      NASA Research Physical Scientist
      The animation below, based on AWP data, shows the complexity and structure of aerosol layers present in the atmosphere. Current prediction models do not accurately simulate how aerosols are organized throughout the breadth of the atmosphere, said Bedka.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This visualization shows AWP 3D measurements gathered on Oct. 15, 2024, as NASA’s G-III aircraft flew along the East Coast of the U.S. and across the Great Lakes region. Laser light that returns to AWP as backscatter from aerosol particles and clouds allows for measurement of wind direction, speed, and aerosol concentration as seen in the separation of data layers. NASA/Scientific Visualization Studio “When we took off on this particular day, I thought that we would be finding a clear atmosphere with little to no aerosol return because we were flying into what was the first real blast of cool Canadian air of the fall,” described Bedka. “What we found was quite the opposite: an aerosol-rich environment which provided excellent signal to accurately measure winds.” 
      During the Joint Venture flights, Hurricane Helene was making landfall in Florida. The AWP crew of two pilots and five science team members quickly created a flight plan to gather wind measurements along the outer bands of the severe storm.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This video shows monitors tracking the AWP science team’s location in the western outer bands of Hurricane Helene off the coast of Florida with views outside of the aircraft looking at turbulent storm clouds on Sept. 26, 2024. NASA/Kris Bedka “A 3D wind profile can significantly improve weather forecasts, particularly for storms and hurricanes,” said Harshesh Patel, NOAA’s acting Joint Venture Program manager. “NASA Langley specializes in the development of coherent Doppler wind lidar technology and this AWP concept has potential to provide better performance for NOAA’s needs.”
      The flight plan of NASA’s G-III aircraft – outfitted with the Aerosol Wind Profiler – as it gathered data across the Southeastern U.S. and flew through portions of Hurricane Helene on Sept. 26, 2024. The flight plan is overlaid atop a NOAA Geostationary Operational Environmental Satellite-16 (GOES) satellite image from that day. NASA/John Cooney The flights of the AWP lidar are serving as a proving ground for possible integration into a future satellite mission.
      “The need to improve global 3D wind models requires a space-based platform,” added Patel. “Instruments like AWP have specific space-based applications that potentially align with NOAA’s mission to provide critical data for improving weather forecasting.”
      A view of the outer bands of Hurricane Helene off the coast of Florida during NASA’s science flights demonstrating the Aerosol Wind Profiler instrument on Sept. 26, 2024.NASA/Maurice Cross After the NOAA flights, AWP and HALO were sent to central California for the Westcoast & Heartland Hyperspectral Microwave Sensor Intensive Experiment  and the Active Passive profiling Experiment, which was supported by NASA’s Planetary Boundary Layer Decadal Survey Incubation Program and NASA Weather Programs. These missions studied atmospheric processes within the planetary boundary layer, the lowest part of the atmosphere, that drives the weather conditions we experience on the ground. 
      To learn more about lidar instruments at NASA visit:
      NASA Langley Research Center: Generations of Lidar Expertise
      About the Author
      Charles G. Hatfield
      Science Public Affairs Officer, NASA Langley Research Center
      Share
      Details
      Last Updated Apr 28, 2025 LocationNASA Langley Research Center Related Terms
      General Airborne Science Clouds Langley Research Center Explore More
      3 min read Lunar Space Station Module for NASA’s Artemis Campaign to Begin Final Outfitting
      Article 3 days ago 4 min read Navigation Technology
      Article 3 days ago 3 min read NASA Tracks Snowmelt to Improve Water Management
      Article 4 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The C-20A aircraft, based at NASA’s Armstrong Flight Research Center in Edwards, California, flies over the Sierra Nevada Mountains in California for the Dense UAVSAR Snow Time (DUST) mission on Feb. 28, 2025. The DUST mission collected airborne data about snow water to help improve water management and reservoir systems on the ground.NASA/Starr Ginn As part of a science mission tracking one of Earth’s most precious resources – water – NASA’s C-20A aircraft conducted a series of seven research flights in March that can help researchers track the process and timeline as snow melts and transforms into a freshwater resource. The agency’s Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) installed on the aircraft collected measurements of seasonal snow cover and estimate the freshwater contained in it.
      “Seasonal snow is a critical resource for drinking water, power generation, supporting multi-billion dollar agricultural and recreation industries,” said Starr Ginn, C-20A project manager at NASA’s Armstrong Flight Research Center in Edwards, California.  “Consequently, understanding the distribution of seasonal snow storage and subsequent runoff is essential.”
      The Dense UAVSAR Snow Time (DUST) mission mapped snow accumulation over the Sierra Nevada mountains in California and the Rocky Mountains in Idaho. Mission scientists can use these observations to estimate the amount of water stored in that snow.
      Peter Wu, radar operator from NASA’s Jet Propulsion Laboratory in Southern California, observes data collected during the Dense UAVSAR Snow Time (DUST) mission onboard NASA’s C-20A aircraft on Feb. 28, 2025. The C-20A flew from NASA’s Armstrong Flight Research Center in Edwards, California, over the Sierra Nevada Mountains to collect data about snow water.NASA/Starr Ginn “Until recently, defining the best method for accurately measuring snow water equivalent (SWE) – or how much and when fresh water is converted from snow – has been a challenge,” said Shadi Oveisgharan, principal investigator of DUST and scientist at NASA’s Jet Propulsion Laboratory in Southern California. “The UAVSAR has been shown to be a good instrument to retrieve SWE data.”
      Recent research has shown that snow properties, weather patterns, and seasonal conditions in the American West have been shifting in recent decades. These changes have fundamentally altered previous expectations about snowpack monitoring and forecasts of snow runoff. The DUST mission aims to better track and understand those changes to develop more accurate estimates of snow-to-water conversions and their timelines.
      “We are trying to find the optimum window during which to retrieve snow data,” Oveisgharan said. “This estimation will help us better estimate available fresh snow and manage our reservoirs better.”
      The Dense UAVSAR Snow Time (DUST) mission team assembles next to the C-20A aircraft at NASA’s Armstrong Flight Research Center in Edwards, California, on Feb. 28, 2025. From left, radar operator Adam Vaccaro, avionics lead Kelly Jellison, C-20A project manager Starr Ginn, pilot Carrie Worth, pilot Troy Asher, aircraft mechanic Eric Apikian, and operations engineer Ian Elkin.NASA/Starr Ginn The DUST mission achieved a new level of snow data accuracy, which is partly due to the specialized flight paths flown by the C-20A. The aircraft’s Platform Precision Autopilot (PPA) enables the team to fly very specific routes at exact altitudes, speeds, and angles so the UAVSAR can more precisely measure terrain changes.
      “Imagine the rows made on grass by a lawn mower,” said Joe Piotrowski Jr., operations engineer for NASA Armstrong’s airborne science program. “The PPA system enables the C-20A to make those paths while measuring terrain changes down to the diameter of a centimeter.”
      Share
      Details
      Last Updated Apr 24, 2025 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Airborne Science C-20A Earth Science Earth's Atmosphere Jet Propulsion Laboratory Science Mission Directorate Explore More
      6 min read NASA Tests Key Spacesuit Parts Inside This Icy Chamber
      Article 5 hours ago 2 min read 2025 EGU Hyperwall Schedule
      EGU General Assembly, April 27 – May 2, 2025 Join NASA in the Exhibit Hall…
      Article 7 hours ago 5 min read NASA Airborne Sensor’s Wildfire Data Helps Firefighters Take Action
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Researchers use a flat aerogel array antenna to communicate with a geostationary satellite above the Earth during tests at NASA’s Glenn Research Center in Cleveland.Credit: NASA/Jordan Cochran NASA engineers are using one of the world’s lightest solid materials to construct an antenna that could be embedded into the skin of an aircraft, creating a more aerodynamic and reliable communication solution for drones and other future air transportation options. 
      Developed by NASA, this ultra-lightweight aerogel antenna is designed to enable satellite communications where power and space are limited. The aerogel is made up of flexible, high-performance plastics known as polymers. The design features high air content (95%) and offers a combination of light weight and strength. Researchers can adjust its properties to achieve either the flexibility of plastic wrap or the rigidity of plexiglass.
      “By removing the liquid portion of a gel, you’re left with this incredibly porous structure,” said Stephanie Vivod, a chemical engineer at NASA’s Glenn Research Center in Cleveland. “If you’ve ever made Jell-O, you’ve performed chemistry that’s similar to the first step of making an aerogel.”
      NASA sandwiched a layer of aerogel between a small circuit board and an array of thin, circular copper cells, then topped the design off with a type of film known for its electrical insulation properties. This innovation is known at NASA and in the aviation community as an active phased array aerogel antenna. 
      A sample of aerogel is folded to demonstrate its flexibility during testing at NASA’s Glenn Research Center in Cleveland.Credit: NASA In addition to decreasing drag by conforming to the shape of aircraft, aerogel antennas save weight and space and come with the ability to adjust their individual array elements to reduce signal interference. They are also less visually intrusive compared to other types of antennas, such as spikes and blades. The finished product looks like a honeycomb but lays flat on an aircraft’s surface.
      In the summer of 2024, researchers tested a rigid version of the antenna on a Britten-Norman Defender aircraft during an in-flight demonstration with the U.S. Navy at Naval Air Station Patuxent River in Maryland.
      A Britten-Norman Defender aircraft outfitted with an advanced phased array antenna prototype for a flight test in summer 2024. The aircraft was used to verify data transmission quality and communications link resiliency with a low Earth orbit satellite.Credit: U.S. Navy Then, last October, researchers at NASA Glenn and the satellite communications firm Eutelsat America Corp., of Houston, began ground testing a version of the antenna mounted to a platform. The team successfully connected with a Eutelsat satellite in geostationary orbit, which bounced a signal back down to a satellite dish on a building at Glenn. Other demonstrations of the system at Glenn connected with a constellation of communications satellites operated in low Earth orbit by the data relay company Kepler. NASA researchers will design, build, and test a flexible version of the antenna later this year.
      “This is significant because we are able to use the same antenna to connect with two very different satellite systems,” said Glenn researcher Bryan Schoenholz. Low Earth orbit satellites are relatively close – at 1,200 miles from the surface – and move quickly around the planet. Geostationary satellites are much farther – more than 22,000 miles from the surface – but orbit at speeds matching the Earth’s rotation, so they appear to remain in a fixed position above the equator.
      NASA Glenn Research Center’s Sarah Dever and Mick Koch, electrical engineers, command an active phased array antenna to point toward a geostationary satellite. They used a flat version of an aerogel antenna during tests in October 2024.Credit: NASA/Jordan Cochran The satellite testing was crucial for analyzing the aerogel antenna concept’s potential real-world applications. When modern aircraft communicate with stations on the ground, those signals are often transmitted through satellite relays, which can come with delays and loss of communication. This NASA-developed technology will make sure these satellite links are not disrupted during flight as the aerogel antenna’s beam is a concentrated flow of radio waves that can be electronically steered with precision to maintain the connection.
      As new types of air transportation options are brought to the market and U.S airspace – from the small, piloted aircraft of today to the autonomous air taxis and delivery drones of tomorrow – these kinds of steady connections will become increasingly important. That’s why NASA’s Advanced Air Mobility mission and Transformative Aeronautics Concepts program are supporting research like the aerogel antennas that can boost industry efforts to safely expand the emerging marketplace for these transportation systems.
      “If an autonomous air taxi or drone flight loses its communications link, we have a very unsafe situation,” Schoenholz said. “We can’t afford a ‘dropped call’ up there because that connection is critical to the safety of the flight.”
      Schoenholz, Vivod, and others work on NASA’s Antenna Deployment and Optimization Technologies activity within the Transformational Tools and Technologies project. The activity aims to develop technologies that reduce the risk of radio frequency interference from air taxis, drones, commercial passenger jets, and other aircraft in increasingly crowded airspace.
      Explore More
      2 min read A Fond Farewell: NASA’s C-130 Begins New Mission in California
      Article 4 days ago 4 min read NASA Glenn to Test Air Quality Monitors Aboard Space Station
      Article 4 days ago 3 min read NASA Studies Wind Effects and Aircraft Tracking with Joby Aircraft
      Article 5 days ago View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Piloted by NASA’s Tim Williams, the ER-2 science aircraft ascends for one of the final science flights for the GSFC Lidar Observation and Validation Experiment (GLOVE) on Feb. 1, 2025. As a collaboration between engineers, scientists, and aircraft professionals, GLOVE aims to improve satellite data products for Earth Science applications. NASA/Steve Freeman In February, NASA’s ER-2 science aircraft flew instruments designed to improve satellite data products and Earth science observations. From data collection to processing, satellite systems continue to advance, and NASA is exploring how instruments analyzing clouds can improve data measurement methods.
      Researchers participating in the Goddard Space Flight Center Lidar Observation and Validation Experiment (GLOVE) used the ER-2 – based at NASA’s Armstrong Flight Research Center in Edwards, California – to validate satellite data about cloud and airborne particles in the Earth’s atmosphere. Scientists are using GLOVE instruments installed onboard the aircraft to measure and validate data about clouds generated by satellite sensors already orbiting in space around Earth.
      “The GLOVE data will allow us to test new artificial intelligence algorithms in data processing,” said John Yorks, principal investigator for GLOVE and research physical scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “These algorithms aim to improve the cloud and aerosol detection in data produced by the satellites.”
      Jennifer Moore, a researcher from NASA’s Goddard Space Flight Center, checks the cabling on the Roscoe instrument at NASA’s Armstrong Flight Research Center in Edwards, California, for the GSFC Lidar Observation and Validation Experiment (GLOVE) on Feb. 1, 2025. The Roscoe instrument will be uploaded onto NASA’s ER-2 science aircraft.NASA/Steve Freeman The validation provided by GLOVE is crucial because it ensures the accuracy and reliability of satellite data. “The instruments on the plane provide a higher resolution measurement ‘truth’ to ensure the data is a true representation of the atmospheric scene being sampled,” Yorks said.
      The ER-2 flew over various parts of Oregon, Arizona, Utah, and Nevada, as well as over the Pacific Ocean off the coast of California. These regions reflected various types of atmospheres, including cirrus clouds, marine stratocumulus, rain and snow, and areas with multiple types of clouds.
      “The goal is to improve satellite data products for Earth science applications,” Yorks said. “These measurements allow scientists and decision-makers to confidently use this satellite information for applications like weather forecasting and hazard monitoring.”
      Researcher Jackson Begolka from the University of Iowa examines instrument connectors onboard the ER-2 aircraft at NASA’s Armstrong Flight Research Center in Edwards, California, on Feb. 1, 2025. The GLOVE instrument will validate data from satellites orbiting the Earth.NASA/Steve Freeman The four instruments installed on the ER-2 were the Cloud Physics Lidar, the Roscoe Lidar, the enhanced Moderate Resolution Imaging Spectroradiometer Airborne Simulator, and the Cloud Radar System. These instruments validate data produced by sensors on NASA’s Ice, Cloud, and Land Elevation Satellite 2 (ICESat-2) and the Earth Cloud, Aerosol and Radiation Explorer (EarthCARE), a joint venture between the ESA (European Space Agency) and JAXA (Japan Aerospace Exploration Agency).
      “Additionally, the EarthCARE satellite is flying the first ever Doppler radar for measurements of air motions within clouds,” Yorks said. While the ER-2 is operated by pilots and aircrew from NASA Armstrong, these instruments are supported by scientists from NASA Goddard, NASA’s Ames Research Center in California’s Silicon Valley, and the Naval Research Laboratory office in Monterey, California, as well as by students from the University of Iowa in Iowa City and the University of Maryland College Park.
      Share
      Details
      Last Updated Apr 16, 2025 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Airborne Science Earth Science Earth Science Technology Office Earth's Atmosphere ER-2 Goddard Space Flight Center Explore More
      4 min read Hubble Provides New View of Galactic Favorite
      As part of ESA/Hubble’s 35th anniversary celebrations, the European Space Agency (ESA) is sharing a new…
      Article 9 hours ago 4 min read NASA Aims to Fly First Quantum Sensor for Gravity Measurements
      Researchers from NASA’s Jet Propulsion Laboratory in Southern California, private companies, and academic institutions are…
      Article 1 day ago 5 min read Can Solar Wind Make Water on Moon? NASA Experiment Shows Maybe 
      Scientists have hypothesized since the 1960s that the Sun is a source of ingredients that…
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      The airborne Lunar Spectral Irradiance (air-LUSI) instrument is moved across the hangar floor by robotic engineer Alexander McCafferty-Leroux ,from right to left, co-investigator Dr. John Woodward, NIST astronomer Dr. Susana Deustua, air-LUSI chief system engineer Dr. Kathleen “Kat” Scanlon, and members of the ER-2 ground crew at NASA’s Armstrong Flight Research Center in Edwards, California, in March 2025.NASA/Genaro Vavuris Flying high above the clouds and moon-gazing may sound like a scene from a timeless romance, but NASA did just that in the name of Earth science research. In March 2025 pilots took the agency’s ER-2 science aircraft on a series of night flights over NASA’s Armstrong Flight Research Center in Edwards, California, as the Moon increased in visible size. For those few nights, the high-flying plane was converted into a one-of-a-kind airborne lunar observatory.
      The Airborne Lunar Spectral Irradiance, or air-LUSI, mission observed the Moon at different phases and measured the sunlight reflected by the lunar surface. Specifically, the instrument tracks the amount of light reflected at different wavelengths. This information enables scientists to use the Moon as a calibration tool for Earth-observing sensors.
      As an “absolute reference, the Moon also becomes the perfect benchmark for satellites to consistently and accurately measure processes on Earth,” said Kevin Turpie, air-LUSI’s principal investigator and a researcher based at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. This helps scientists to improve the precision of many different measurements, including data on weather patterns, vegetation growth, and ocean conditions.
      As the highest-flying platform for airborne science, the ER-2 can fly the air-LUSI instrument in the stratosphere, above 95% of the atmosphere. Data collected at an altitude nearing 70,000 feet are highly accurate because the air is predominantly clear of the gases and particles found in the lower atmosphere that can interfere with measurements.
      The ER-2 aircraft is parked in a hangar at NASA’s Armstrong Flight Research Center in Edwards, California, in March 2025. The plane is prepared for takeoff to support the airborne Lunar Spectral Irradiance, or air-LUSI, mission.NASA/Genaro Vavuris “To date, air-LUSI measurements of the Moon are the most accurate ever made,” said Kelsey Bisson, the NASA program scientist supporting the mission. “Air-LUSI data can advance our ability to understand the Earth and our weather, and they provide a new way to calibrate satellites that can result in cost savings.”
      The quality of these data has transformative implications for satellite and Earth observing systems. The improved accuracy and enhanced ability provided by air-LUSI data flown on the ER-2 reduces the need for onboard reference devices, effectually cutting satellite costs.
      The air-LUSI project is a collaboration between scientists and engineers from NASA, the National Institute of Standards and Technology, the U.S. Geological Survey, the University of Maryland Baltimore County, and McMaster University in Ontario.
      The ER-2 ground crew Wissam Habbal, left, and Dr. Kevin Turpie, airborne Lunar Spectral Irradiance (air-LUSI) principal investigator, guide delicate fiber optic and electric cabling into place while uploading the air-LUSI instrument onto the ER-2 aircraft in March 2025 at NASA’s Armstrong Flight Research Center in Edwards, California.NASA/Genaro Vavuris “The collective effort of the American and Canadian team members offers an opportunity for truly exciting engineering and science collaboration,” said Andrew Gadsden, associate professor and associate chair for graduate studies in mechanical engineering at McMaster University, and co-investigator on the air-LUSI project. The McMaster team developed the Autonomous Robotic Telescope Mount Instrument System and High-Altitude Aircraft Mounted Robotic (HAAMR) telescope mount, which support the air-LUSI system.
      Dr. John Woodward, of the National Institute of Standards and Technology and co-investigator on the airborne Lunar Spectral Irradiance (air-LUSI) mission, prepares the instrument for upload onto the ER-2 aircraft in March 2025 at NASA’s Armstrong Flight Research Center in Edwards, California.NASA/Genaro Vavuris The HAAMR telescope mount was integrated onto the ER-2 and flown for the first time during the science flights in March. This new lunar tracking system is contributing to what John Woodward IV, co-investigator for air-LUSI, called the “highest accuracy measurements” of moonlight. To improve Earth observation technology, air-LUSI represents an important evolutionary step.
      View the full article
  • Check out these Videos

×
×
  • Create New...