Members Can Post Anonymously On This Site
Hubble's Tale of Two Exoplanets: Nature vs. Nurture
-
Similar Topics
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Scientists believe giant impacts — like the one depicted in this artist’s concept — occurred on Mars 4.5 billion years ago, injecting debris from the impact deep into the planet’s mantle. NASA’s InSight lander detected this debris before the mission’s end in 2022.NASA/JPL-Caltech Rocky material that impacted Mars lies scattered in giant lumps throughout the planet’s mantle, offering clues about Mars’ interior and its ancient past.
What appear to be fragments from the aftermath of massive impacts on Mars that occurred 4.5 billion years ago have been detected deep below the planet’s surface. The discovery was made thanks to NASA’s now-retired InSight lander, which recorded the findings before the mission’s end in 2022. The ancient impacts released enough energy to melt continent-size swaths of the early crust and mantle into vast magma oceans, simultaneously injecting the impactor fragments and Martian debris deep into the planet’s interior.
There’s no way to tell exactly what struck Mars: The early solar system was filled with a range of different rocky objects that could have done so, including some so large they were effectively protoplanets. The remains of these impacts still exist in the form of lumps that are as large as 2.5 miles (4 kilometers) across and scattered throughout the Martian mantle. They offer a record preserved only on worlds like Mars, whose lack of tectonic plates has kept its interior from being churned up the way Earth’s is through a process known as convection.
A cutaway view of Mars in this artist’s concept (not to scale) reveals debris from ancient impacts scattered through the planet’s mantle. On the surface at left, a meteoroid impact sends seismic signals through the interior; at right is NASA’s InSight lander.NASA/JPL-Caltech The finding was reported Thursday, Aug. 28, in a study published by the journal Science.
“We’ve never seen the inside of a planet in such fine detail and clarity before,” said the paper’s lead author, Constantinos Charalambous of Imperial College London. “What we’re seeing is a mantle studded with ancient fragments. Their survival to this day tells us Mars’ mantle has evolved sluggishly over billions of years. On Earth, features like these may well have been largely erased.”
InSight, which was managed by NASA’s Jet Propulsion Laboratory in Southern California, placed the first seismometer on Mars’ surface in 2018. The extremely sensitive instrument recorded 1,319 marsquakes before the lander’s end of mission in 2022.
NASA’s InSight took this selfie in 2019 using a camera on its robotic arm. The lander also used its arm to deploy the mission’s seismometer, whose data was used in a 2025 study showing impacts left chunks of debris deep in the planet’s interior.NASA/JPL-Caltech Quakes produce seismic waves that change as they pass through different kinds of material, providing scientists a way to study the interior of a planetary body. To date, the InSight team has measured the size, depth, and composition of Mars’ crust, mantle, and core. This latest discovery regarding the mantle’s composition suggests how much is still waiting to be discovered within InSight’s data.
“We knew Mars was a time capsule bearing records of its early formation, but we didn’t anticipate just how clearly we’d be able to see with InSight,” said Tom Pike of Imperial College London, coauthor of the paper.
Quake hunting
Mars lacks the tectonic plates that produce the temblors many people in seismically active areas are familiar with. But there are two other types of quakes on Earth that also occur on Mars: those caused by rocks cracking under heat and pressure, and those caused by meteoroid impacts.
Of the two types, meteoroid impacts on Mars produce high-frequency seismic waves that travel from the crust deep into the planet’s mantle, according to a paper published earlier this year in Geophysical Research Letters. Located beneath the planet’s crust, the Martian mantle can be as much as 960 miles (1,550 kilometers) thick and is made of solid rock that can reach temperatures as high as 2,732 degrees Fahrenheit (1,500 degrees Celsius).
Scrambled signals
The new Science paper identifies eight marsquakes whose seismic waves contained strong, high-frequency energy that reached deep into the mantle, where their seismic waves were distinctly altered.
“When we first saw this in our quake data, we thought the slowdowns were happening in the Martian crust,” Pike said. “But then we noticed that the farther seismic waves travel through the mantle, the more these high-frequency signals were being delayed.”
Using planetwide computer simulations, the team saw that the slowing down and scrambling happened only when the signals passed through small, localized regions within the mantle. They also determined that these regions appear to be lumps of material with a different composition than the surrounding mantle.
With one riddle solved, the team focused on another: how those lumps got there.
Turning back the clock, they concluded that the lumps likely arrived as giant asteroids or other rocky material that struck Mars during the early solar system, generating those oceans of magma as they drove deep into the mantle, bringing with them fragments of crust and mantle.
Charalambous likens the pattern to shattered glass — a few large shards with many smaller fragments. The pattern is consistent with a large release of energy that scattered many fragments of material throughout the mantle. It also fits well with current thinking that in the early solar system, asteroids and other planetary bodies regularly bombarded the young planets.
On Earth, the crust and uppermost mantle is continuously recycled by plate tectonics pushing a plate’s edge into the hot interior, where, through convection, hotter, less-dense material rises and cooler, denser material sinks. Mars, by contrast, lacks tectonic plates, and its interior circulates far more sluggishly. The fact that such fine structures are still visible today, Charalambous said, “tells us Mars hasn’t undergone the vigorous churning that would have smoothed out these lumps.”
And in that way, Mars could point to what may be lurking beneath the surface of other rocky planets that lack plate tectonics, including Venus and Mercury.
More about InSight
JPL managed InSight for NASA’s Science Mission Directorate. InSight was part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. Lockheed Martin Space in Denver built the InSight spacecraft, including its cruise stage and lander, and supported spacecraft operations for the mission.
A number of European partners, including France’s Centre National d’Études Spatiales (CNES) and the German Aerospace Center (DLR), supported the InSight mission. CNES provided the Seismic Experiment for Interior Structure (SEIS) instrument to NASA, with the principal investigator at IPGP (Institut de Physique du Globe de Paris). Significant contributions for SEIS came from IPGP; the Max Planck Institute for Solar System Research (MPS) in Germany; the Swiss Federal Institute of Technology (ETH Zurich) in Switzerland; Imperial College London and Oxford University in the United Kingdom; and JPL. DLR provided the Heat Flow and Physical Properties Package (HP3) instrument, with significant contributions from the Space Research Center (CBK) of the Polish Academy of Sciences and Astronika in Poland. Spain’s Centro de Astrobiología (CAB) supplied the temperature and wind sensors.
News Media Contacts
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2025-110
Share
Details
Last Updated Aug 28, 2025 Related Terms
InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Jet Propulsion Laboratory Mars Explore More
4 min read NASA: Ceres May Have Had Long-Standing Energy to Fuel Habitability
Article 1 week ago 4 min read NASA’s Psyche Captures Images of Earth, Moon
Article 1 week ago 4 min read US-French SWOT Satellite Measures Tsunami After Massive Quake
Article 3 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By Space Force
Space Systems Command has activated two new System Deltas within the mission area of the Space Force Program Executive Officer for Space Sensing.
View the full article
-
By European Space Agency
The beginning of the industrial development of LISA was among the highlights for the European Space Agency on the second day of the International Paris Air Show.
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s coverage of the April 8, 2024, total solar eclipse has earned two nominations for the 46th Annual News & Documentary Emmy Awards.
The Academy of Television Arts & Sciences announced the nominations on May 1, recognizing NASA’s outstanding work in sharing this rare celestial event with audiences around the world. The winners are set to be unveiled at a ceremony in late June.
“Total solar eclipses demonstrate the special connection between our Earth, Moon, and Sun by impacting our senses during the breathtaking moments of total alignment that only occur at this time on Earth,” said Nicky Fox, associate administrator for science at NASA Headquarters in Washington. “NASA’s Eclipse coverage team perfectly encapsulated the awe-inspiring experience from start to finish for viewers around the world in this once-in-a-lifetime moment in American history. Congratulations to the entire NASA Eclipse coverage team for their two much-deserved Emmy award nominations!”
The two nominations include:
Outstanding Live News Special for the agency’s live broadcast coverage of the 2024 total solar eclipse. NASA’s live broadcast coverage of the 2024 total solar eclipse was the most ambitious live project ever attempted by the agency. The broadcast spanned three hours as the eclipse traveled 3,000 miles across seven states and two countries. From cities, parks, and stadiums, 11 hosts and correspondents provided on air commentary, interviews, and live coverage. Viewers tuned in from all over the world, including at watch parties in 9 locations, from the Austin Public Library to New York’s Times Square. An interactive “Eclipse Board” provided real time data analysis as the Moon’s shadow crossed North America. Live feeds from astronauts aboard the International Space Station and NASA’s WB-57 high-altitude research aircraft were brought in to provide rare and unique perspectives of the solar event.
In total, NASA received almost 40 million views across its own distribution. Externally, the main broadcast was picked up in 2,208 hits on 568 channels in 25 countries.
Outstanding Show Open or Title Sequence – News for the agency’s show open for the 2024 total solar eclipse. NASA’s show open for the 2024 total solar eclipse live broadcast explores the powerful connections between the Sun, humanity, and the rare moment when day turns to night. From witnessing the Sun’s atmosphere to feeling the dramatic drop in temperature, the video captures the psychological, emotional, and cultural impact of this celestial phenomenon.
For more information about NASA missions, visit:
https://www.nasa.gov
Share
Details
Last Updated May 08, 2025 Related Terms
General 2024 Solar Eclipse Eclipses Heliophysics Heliophysics Division Science Mission Directorate Solar Eclipses The Solar System Explore More
7 min read NASA’s Hubble Pinpoints Roaming Massive Black Hole
Like a scene out of a sci-fi movie, astronomers using NASA telescopes have found “Space…
Article 3 hours ago 2 min read NASA Expands Youth Engagement With New Scouting America Agreement
Article 1 day ago 5 min read NASA Progresses Toward Crewed Moon Mission with Spacecraft, Rocket Milestones
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
Video: 00:03:23 Astrophysicist and Nobel Prize Laureate Didier Queloz answers the who, what, where, when and why of exoplanets in this 3-part series.
View the full article
-
-
Similar Videos
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.