Jump to content

Recommended Posts

Posted
Inside_the_Columbus_science_lab_Cosmic_K Video: 00:31:09

Join ESA astronaut Matthias Maurer on a tour of Columbus, Europe’s science laboratory on the International Space Station.

Cosmic Kiss is Matthias’s first mission to the Space Station and the Columbus module is one of his main workplaces. It is also where he sleeps in his crew quarters known as CASA.

Columbus is Europe's largest contribution to the orbital outpost and the first European laboratory for permanent, multidisciplinary research in space. It houses 16 standardised payload cabinets, known as racks, which host laboratory equipment and technical systems. This allows the facility to support research across a wide range of different scientific disciplines.

Work focuses on materials science, fluid physics, chemistry, remote sensing, biology, biotechnology, medicine and human physiology, as well as technology demonstrations to aid innovation on Earth. Once installed by an astronaut, many of the experiments that happen in Columbus can be remotely controlled and monitored by User Support Operations Centres on the ground.

Matthias will live and work in orbit for approximately six months for his Cosmic Kiss mission. During this time, he will conduct and support more than 35 European and numerous other international experiments in microgravity.

Follow Matthias

Access the related broadcast quality video material.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Science Courses & Curriculums for… STEM Educators Are Bringing… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   4 min read
      STEM Educators Are Bringing Hands-On NASA Science into Virginia Classrooms
      Professional learning experiences are integral to the enhancement of classroom instruction. Teachers, at the forefront of Science, Technology, Engineering, & Mathematics (STEM) education, play a key role in the advancement of STEM learning ecosystems and citizen science.
      On June 24-25, 2025 – despite a major east coast heat wave – twenty-four educators from eight school districts in the Hampton Roads region of southeastern Virginia (Newport News, Hampton City, Virginia Beach City, Isle of Wight County, Poquoson City, Norfolk, York County, and Suffolk Public Schools) converged at the National Institute of Aerospace (NIA) in Hampton, VA for a professional development workshop led by experts from NASA Langley Research Center and the NASA Science Activation program’s NIA-led NASA eClips team. Developed in collaboration with another NASA Science Activation team, GLOBE (Global Learning and Observations to Benefit the Environment) Mission Earth, and with support from the Coastal Virginia STEM Hub (COVA STEM) – a “STEM learning ecosystem targeting pre-K to adult residents in Coastal Virginia” – this two-day training, also provided comprehensive resources, including lesson plans, pacing guides, classroom activities, and books, all designed for integration into Hampton Roads classrooms.
      The NASA Langley team led workshop participants through a training about GLOBE, a program dedicated to advancing Earth System science through data collected by volunteer members of the public, also known as ‘citizen scientists’. GLOBE invites educators, students, and members of the public worldwide (regardless of citizenship) to collect and submit cloud, surface temperature, and land cover observations using the GLOBE Observer app – a real-time data collection tool available right on their smartphones. These observations are then used to help address scientific questions at local, regional, and global scales. Through this training, the educators participated in K-20 classroom-friendly sample lessons, hands-on activities, and exploring the GLOBE Observer app, ultimately qualifying them as GLOBE Certified Educators. Earth System science lessons, activities, and information on how to download the GLOBE Observer citizen science app are available on the GLOBE website. Similarly, NASA eClips, which focuses on increasing STEM literacy in K-12 students, provided educators with free, valuable, standards-based classroom resources such as educator guides, informational videos, engineering design packets, and hands-on activities, which are available to educators and students alike on the NASA eClips’ website. Throughout the training, educators collaborated in grade-level groups, brainstorming new ways to integrate these standards-based NASA science resources.
      One educator envisioned incorporating GLOBE’s cloud resources and supportive NASA eClips videos into her energy budget unit. Others explored modifying a heat-lamp experiment to include humidity and heat capacity. One teacher enthusiastically noted in response to a GLOBE urban heat island lesson plan, “The hands-on elements are going to be really great deliverables!” The creative energy and passion for education were palpable.
      The dedication of both NIA and NASA Langley to education and local community support was evident. This professional learning experience offered educators immediately-applicable classroom activities and fostered connections among NASA science, NASA eClips, the GLOBE Program, and fellow educators across district lines. One educator highlighted the value of these networking opportunities, stating, “I do love that we’re able to collaborate with our colleagues so we can plan for our future units during the school year”. Another participant commented, “This is a great program…I am going to start embedding [this] in our curriculum.”
      GME (supported by NASA under cooperative agreement award number NNX16AC54A) and NASA eClips (supported by NASA under cooperative agreement award number NNX16AB91A) are part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      GLOBE educator Marilé Colón Robles demonstrates a kinesthetic activity. Share








      Details
      Last Updated Aug 04, 2025 Editor NASA Science Editorial Team Location NASA Langley Research Center Related Terms
      Courses & Curriculums for Professionals Earth Science Opportunities For Educators to Get Involved Science Activation Explore More
      4 min read NUBE: New Card Game Helps Learners Identify Cloud Types Through Play


      Article


      3 days ago
      3 min read NASA eClips STEM Student Ambassadors Light Up CNU’s 2025 STEM Community Day


      Article


      2 weeks ago
      2 min read GLOBE-Trotting Science Lands in Chesapeake with NASA eClips


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      Science Communication Intern – Goddard Space Flight Center
      Laine Havens — now a senior at Cornell University and three-time NASA intern — grew up with a deep curiosity about how the universe works and a family that encouraged her to explore it. Throughout her childhood, Laine was immersed in science and exposed to wonderful science communicators by her mother and grandfather. 
      Her grandfather, a retired Kodak engineer, encouraged inquisition into all matters — whether it be the inner workings of a telescope or an abandoned hornet’s nest. Laine spent summer evenings watching Mythbusters or Cosmos, and her mother’s favorite science podcast soundtracked car trips. Inspired by the likes of Carl Sagan, Laine originally intended to become a scientist.
      “I fell in love with physics in high school,” she says. “I figured I would study it in college all the way through to a Ph.D.”
      As a three-time NASA communications intern, Laine Havens has translated science for an audience of millions of people around the globe through science writing, social media, and video production.Credit: Kristin Rutkowski Photography Laine enrolled at Cornell and originally majored in physics as planned. But then she discovered an even more exciting option serendipitously while browsing an academic catalog: science and technology studies.
      “I was scrolling through looking for a different class, but then I saw science and technology studies and began reading more about what it involved,” Laine says. “It was all about studying science — the philosophy of what it is, and how it interacts with social, political, ethical, and historical dimensions.”
      Seeing the new program made Laine realize she could connect her love for critical analysis with her interest in science. She changed her program to a double-major in science and technology studies and astronomy, resolving to not only study and communicate science but to better understand the factors that influence it.
      Laine (left) is a senior at Cornell University, where she double-majors in astronomy and science and technology studies. She served as the student newspaper’s science editor and president of the Pants Improv Comedy group. Laine channeled her comedic skills for some of her NASA projects, including a reel that used puns to discuss the agency’s upcoming Nancy Grace Roman Space Telescope.Credit: Courtesy of Laine Havens Laine began by working as a science writer at her university’s student-run newspaper, The Cornell Daily Sun, where she later became the science editor. Meanwhile, she volunteered with The Physics Bus — basically a mini science museum on wheels with experiments for kids — and the Free Science Workshop, an after school program offering kids an opportunity to build things or craft using all sorts of materials and gadgets.
      “When you first hear about physics there’s a huge stigma, so we aimed to expose kids to it at a young age so they would associate it with fun,” Laine says.
      Laine volunteered with The Physics Bus to introduce kids to the subject in a fun environment, helping them see the magic of how the world works before they learn to associate physics with boredom or intimidation.Credit: Courtesy of Laine Havens During her junior year, Laine started searching for science communication internships and found one at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. She applied and was accepted to one focusing on NASA’s upcoming Nancy Grace Roman Space Telescope. Following her first internship, Laine came back for two more with the same team. 
      “Every day here at NASA is inspiring,” Laine says. “I’ve learned so much about both hard and soft skills involved in science communication.”
      During her first internship, Laine leaned into her background as a science writer to cover engineering milestones and craft a Tumblr post that walks readers through the universe’s different stages. She also produced videos, including one about Goddard’s biggest clean room.
      “Everybody let me take that and run,” Laine says. “I got to write the script, host the video, and edit it.” The video, which garnered millions of views on social media, was the first of several Laine created to engage NASA’s traditional audience while drawing in others who don’t typically follow NASA or science very closely.
      In addition to her usual assigned tasks, Laine took opportunities to be involved in many different aspects of science storytelling. This photo was taken while Laine worked as a drone spotter, helping to ensure a camera-equipped drone wouldn’t damage sensitive space hardware.Credit: NASA/Sophia Roberts Throughout her internships, Laine also led tours to teach people more about Roman, helped manage a celebrity visit with John Rhys-Davies, wrote Roman team member profiles, helped gather drone footage, contributed to the release of the NASA documentary Cosmic Dawn, emceed an intern day event, and supported Live Shots — short, live TV interviews with NASA experts. 
      “It’s been cool to see a different side of things,” Laine says. “I ultimately want to keep doing what I’ve been doing, but also become engaged in how to make it better — the science of science communication.”
      To others who are interested in interning at NASA, Laine recommends speaking up.
      “Just ask people things, whether it’s for help or an opportunity,” she says. “Sometimes you don’t want to impose or risk looking dumb, but for the most part everyone wants to help you and see you succeed. I’m very grateful to the Roman team for making it feel like a safe space where I could speak up.” 
      In preparation for a clean room “Get Ready With Me” video, Laine shadowed NASA videographer Sophia Roberts in the clean room at the agency’s Goddard Space Flight Center, where she supported documentation of integration milestones for NASA’s Nancy Grace Roman Space Telescope. Credit: NASA/Sophia Roberts Sometimes that meant pitching ideas that were ultimately rejected, but that still provided an opportunity for discussion. “Not everything works, but in talking about it you might think of something else that does work,” she says. “There’s no consequence to it, because either way you’re learning something from it — either from the process of seeing it through or figuring out why you can’t do it.”
      The same advice applies to securing an internship in the first place.
      “Don’t be afraid to advocate for yourself,” Laine says. “If you find something you love, you can’t wait for it to happen on its own — you have to decide to go for it and find a way to make it happen.”
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Jul 30, 2025 Related Terms
      Internships Goddard Space Flight Center Nancy Grace Roman Space Telescope People of Goddard People of NASA View the full article
    • By NASA
      This artist’s concept of Blue Ghost Mission 4 shows Firefly’s Blue Ghost lunar lander and NASA payloads in the lunar South Pole Region, through NASA’s CLPS (Commercial Lunar Payload Services) initiative.Credit: Firefly Aerospace NASA has awarded Firefly Aerospace of Cedar Park, Texas, $176.7 million to deliver two rovers and three scientific instruments to the lunar surface as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to explore more of the Moon than ever before.
      This delivery is the first time NASA will use multiple rovers and a variety of stationary instruments, in a collaborative effort with the CSA (Canadian Space Agency) and the University of Bern, to help us understand the chemical composition of the lunar South Pole region and discover the potential for using resources available in permanently shadowed regions of the Moon.
      “Through CLPS, NASA is embracing a new era of lunar exploration, with commercial companies leading the way,” said Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters in Washington. “These investigations will produce critical knowledge required for long-term sustainability and contribute to a deeper understanding of the lunar surface, allowing us to meet our scientific and exploration goals for the South Pole region of the Moon for the benefit of all.”
      Under the new CLPS task order, Firefly is tasked with delivering end-to-end payload services to the lunar surface, with a period of performance from Tuesday to March 29, 2030. The company’s lunar lander is targeted to land at the Moon’s South Pole region in 2029.
      This is Firefly’s fifth task order award and fourth lunar mission through CLPS. Firefly’s first delivery successfully landed on the Moon’s near side in March 2025 with 10 NASA payloads. The company’s second mission, targeting a launch in 2026, includes a lunar orbit drop-off of a satellite combined with a delivery to the lunar surface on the far side. Firefly’s third lunar mission will target landing in the Gruithuisen Domes on the near side of the Moon in 2028, delivering six experiments to study that enigmatic lunar volcanic terrain.
      “As NASA sends both humans and robots to further explore the Moon, CLPS deliveries to the lunar South Pole region will provide a better understanding of the exploration environment, accelerating progress toward establishing a long-term human presence on the Moon, as well as eventual human missions to Mars,” said Adam Schlesinger, manager of the CLPS initiative at NASA’s Johnson Space Center in Houston.
      The rovers and instruments that are part of this newly awarded flight include:
      MoonRanger is an autonomous microrover that will explore the lunar surface. MoonRanger will collect images and telemetry data while demonstrating autonomous capabilities for lunar polar exploration. Its onboard Neutron Spectrometer System instrument will study hydrogen-bearing volatiles and the composition of lunar regolith, or soil.
      Lead development organizations: NASA’s Ames Research Center in California’s Silicon Valley, and Carnegie Mellon University and Astrobotic, both in Pittsburgh. Stereo Cameras for Lunar Plume Surface Studies will use enhanced stereo imaging photogrammetry, active illumination, and ejecta impact detection sensors to capture the impact of the rocket exhaust plume on lunar regolith as the lander descends on the Moon’s surface. The high-resolution stereo images will help predict lunar regolith erosion and ejecta characteristics, as bigger, heavier spacecraft and hardware are delivered to the Moon near each other in the future.
      Lead development organization: NASA’s Langley Research Center in Hampton, Virginia.  Laser Retroreflector Array is an array of eight retroreflectors on an aluminum support structure that enables precision laser ranging, a measurement of the distance between the orbiting or landing spacecraft to the reflector on the lander. The array is a passive optical instrument, which functions without power, and will serve as a permanent location marker on the Moon for decades to come.
      Lead development organization: NASA’s Goddard Space Flight Center in Greenbelt, Maryland. A CSA Rover is designed to access and explore remote South Pole areas of interest, including permanently shadowed regions, and to survive at least one lunar night. The CSA rover has stereo cameras, a neutron spectrometer, two imagers (visible to near-infrared), a radiation micro-dosimeter, and a NASA-contributed thermal imaging radiometer developed by the Applied Physics Laboratory. These instruments will advance our understanding of the physical and chemical properties of the lunar surface, the geological history of the Moon, and potential resources such as water ice. It will also improve our understanding of the environmental challenges that await future astronauts and their life support systems.
      Lead development organization: CSA. Laser Ionization Mass Spectrometer is a mass spectrometer that will analyze the element and isotope composition of lunar regolith. The instrument will utilize a Firefly-built robotic arm and Titanium shovel that will deploy to the lunar surface and support regolith excavation. The system will then funnel the sample into its collection unit and use a pulsed laser beam to identify differences in chemistry compared to samples studied in the past, like those collected during the Apollo program. Grain-by-grain analyses will provide a better understanding of the chemical complexity of the landing site and the surrounding area, offering insights into the evolution of the Moon.
      Lead development organization: University of Bern in Switzerland. Through the CLPS initiative, NASA purchases lunar landing and surface operations services from American companies. The agency uses CLPS to send scientific instruments and technology demonstrations to advance capabilities for science, exploration, or commercial development of the Moon, and to support human exploration beyond to Mars. By supporting a robust cadence of lunar deliveries, NASA will continue to enable a growing lunar economy while leveraging the entrepreneurial innovation of the commercial space industry.
      To learn more about CLPS and Artemis, visit:
      https://www.nasa.gov/clps
      -end-
      Alise Fisher
      Headquarters, Washington
      202-358-2546
      alise.m.fisher@nasa.gov
      Nilufar Ramji   
      Johnson Space Center, Houston
      281-483-5111
      nilufar.ramji@nasa.gov
      Share
      Details
      Last Updated Jul 29, 2025 LocationNASA Headquarters Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis Earth's Moon View the full article
    • By NASA
      4 Min Read GRUVE Lab
      The CAVE in the GRUVE Lab is capable of running highly immersive VR experiences through powerful projectors, mirrors, an infrared motion tracking system, and active-shutter glasses. Credits: NASA About
      The GRUVE (Glenn Reconfigurable User-Interface and Virtual Reality Exploration) Lab is located within the GVIS Lab. It is home to the CAVE, which is predominantly used for mission scenarios and to tour virtual environments of NASA facilities.
      GRUVE Lab VisualizationUsers virtually explore a facility at NASA’s Glenn Research Center in Cleveland.NASA GRUVE Lab DemonstrationA user analyzes a visualization of a prototype structure.NASA GRUVE Lab VisualizationA user analyzes a visualization of a prototype structure that will be used for a fire experiment on the Moon.NASA GRUVE Lab VisualizationA Graphics and Visualization Lab (GVIS) intern in the Cave Automatic Virtual Environment (CAVE).NASA GRUVE Lab TourA user takes a virtual tour of a facility at NASA’s Glenn Research Center in Cleveland.NASA How GRUVE Works
      GRUVE allows multiple people to view a visualization in 3D together. These visualizations include 3D models of NASA facilities and intricate images created from collected data. 
      Powerful projectors and mirrors, in combination with an infrared motion tracking system and active-shutter glasses, allow viewers to view 3D models and data in perfect perspective. 3D models effectively pop off the screen and remain proportional no matter where the user with the pair of tracking glasses moves in the environment. 
      The CAVE can be driven by either a Windows or Linux computer system, enabling the team to use the best environment for a given problem and software tool. 
      The CAVE setup immerses the user in 3D visualizations through walls on all sides, projectors from above, tracking cameras, and mirrors hidden behind the facade.Visbox, Inc. Benefits of GRUVE
      The CAVE’s technology provides a unique advantage for researchers, scientists, engineers, and others. Seeing and analyzing forces and data that would otherwise not be viewable to the human eye allows the observer to understand their subject matter in more detail. 
      Benefits of GRUVE to research include: 
      Providing an immersive environment: with large screens to fill peripheral vision and stereoscopic projection for a real sense of three-dimensional space, more parts of the brain are engaged, and the user is better able to understand problems and solve them faster  More effective collaboration: the ability to see each other in the virtual reality environment makes GRUVE better for collaboration than traditional VR technology  Seeing complex data and flows in 3D: this makes it easier for both experts and non-experts to understand the data  Providing greater resolution and larger display size: this allows details to be displayed without losing their context  Delivering faster and more accurate manipulation and viewing of models, including CAD data, with fewer errors: this results in a faster time to market and less re-work  All members of NASA Glenn may use GRUVE for their projects.
      Applications of Immersive 3D Environments
      Fluid dynamics analysis (CFD)  Point cloud data, e.g., LiDAR  Virtual design reviews  Virtual manufacturing testing  Computer Aided Design (CAD)  3D imaging data  Training and education  Virtual procedures  Biomedical research  Molecular dynamics  Virtual building walkthroughs  Showroom “theater”  Education and outreach  Building Information Management (BIM)  Big data and data mining  Cybersecurity data analysis  Safety systems analysis  Microfocus CT scan data  Electron microscopy  3D photos and videos  Data Types Supported
      Point cloud data  Volume data  Computational fluid dynamics (CFD)  Computer Aided Design (CAD)  Molecular dynamics  GRUVE Hardware 
      Linux CAVE node  Windows 10 CAVE node  CAVE wall  Stereo glasses  Audio system  Tracking system  Wand  Software Available in the GRUVE Lab 
      The Windows node attached to the GRUVE Lab runs middleware software, which enables Unity-developed applications to run in the CAVE. This greatly expands the number of VR applications that can be run.  Vrui VR Toolkit-based applications such as LiDAR viewer and 3D visualizer  VMD – Visual Molecular Dynamics  ParaView  COVISE– Collaborative Visualization and Simulation Environment Other Visualization Devices
      The GVIS Lab maintains a large collection of computing, visualization, and user interaction devices including: 
      Virtual reality display devices  Head-mounted displays  Room-scale CAVE  Augmented reality head-mounted displays  3D displays  Psuedo-3D displays  Pepper’s Ghost display  Persistence of Vision (POV) LED display  Light field technology- based displays  Projection devices for projected AR  Natural user interface devices  Hand gesture recognition devices  Motion capture devices  Cameras for mixed reality  Computing hardware  High-end laptops  High-end desktops  High-end tablets and smartphones  Cameras  Stereo 3D camera  180/360 camera  Flight simulators  3D printers  All these devices are available for employees to try and test for possible application to their work. 
      A Graphics and Visualization Lab (GVIS) intern in the Cave Automatic Virtual Environment (CAVE).NASA Contact Us 
      Need to reach us? You can send an email directly to the GVIS Team (GRC-DL-GVIS@mail.nasa.gov) or to the team leader, Herb Schilling (hschilling@nasa.gov). 
      Share
      Details
      Last Updated Jul 23, 2025 LocationGlenn Research Center Related Terms
      Glenn Research Center NASA Centers & Facilities Explore More
      5 min read NASA Advances Pressure Sensitive Paint Research Capability
      Article 3 weeks ago 1 min read Gateway Space Station in 3D
      Article 11 months ago 5 min read Augmented Reality Speeds Spacecraft Construction at NASA Goddard
      Article 1 year ago Keep Exploring Discover More Topics From NASA
      Want to Go on a Simulated Mission to the Moon?
      Aeronautics STEM
      Glenn University Student Design Challenges
      NASA at Home: Virtual Tours and Apps
      View the full article
    • By NASA
      Explore This Section Science Earth Science GLOBE-Trotting Science Lands… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   2 min read
      GLOBE-Trotting Science Lands in Chesapeake with NASA eClips
      On June 16-17, 2025, 50 students at Camp Young in Chesapeake, Virginia traded their usual summer routines for microscopes. The NASA eClips team from the National Institute of Aerospace Center for Integrative STEM Education (NIA-CISE) taught two engaging lessons focused on macroinvertebrates and plankton, with a surprising star of the show – mosquitoes!
      Camp Young, a Title I camp program serving students from Norfolk Public Schools, provides year-round, environmental science-based learning. The NASA eClips’ visit reinforced their mission to help students explore their environment on the Elizabeth River while seeing its place in the Earth System.
      The lessons, designed for students in grades 3 through 8, were inspired by NASA’s GLOBE (Global Learning and Observations to Benefit the Environment) program, which encourages people around the world to collect and share environmental data as ‘citizen scientists’. This is where mosquitos stole the show! The lesson focuses on how these tiny insects can serve as indicators of climate and habitat change. By identifying mosquito larvae and understanding their breeding environments, students contributed to the bigger picture of global health and environmental monitoring, right from their own backyard.
      During this experience, Camp Young’s stunning waterfront on the Elizabeth River was turned into a living laboratory. With phytoplankton nets, petri dishes, and sample jars in hand, campers ventured into the field to collect real environmental data, bringing their findings back to a cabin-turned-classroom to analyze them with scientific tools, including microscopes provided by the NASA eClips team.
      Rather than just reading about ecosystems and the kinds of scientific questions that arise within them, students got to experience them firsthand and experience real science in the field. “It’s one thing to talk about microscopic marine organisms,” one instructor noted, “but it’s another thing entirely when students can actually see them swimming in a droplet from the river.”
      The NASA eClips project provides educators with standards-based videos, activities, and lessons to increase STEM literacy through the lens of NASA. It is supported by NASA under cooperative agreement award number NNX16AB91A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      A student collects a stagnant water sample, looking for mosquito eggs and larvae. Share








      Details
      Last Updated Jul 21, 2025 Editor NASA Science Editorial Team Related Terms
      Earth Science Opportunities For Students to Get Involved Science Activation Explore More
      3 min read NASA Citizen Science and Your Career: Stories of Exoplanet Watch Volunteers
      Doing NASA Science brings many rewards. But can taking part in NASA citizen science help…


      Article


      5 days ago
      4 min read NASA SCoPE Summer Symposium Celebrates Early Career Scientists and Cross-Team Collaboration


      Article


      6 days ago
      4 min read Linking Satellite Data and Community Knowledge to Advance Alaskan Snow Science


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
  • Check out these Videos

×
×
  • Create New...