Members Can Post Anonymously On This Site
They will explore Venus using a manta ray inspired spacecraft
-
Similar Topics
-
By NASA
Othmane Benafan is a NASA engineer whose work is literally reshaping how we use aerospace materials — he creates metals that can shape shift. Benafan, a materials research engineer at NASA’s Glenn Research Center in Cleveland, creates metals called shape memory alloys that are custom-made to solve some of the most pressing challenges of space exploration and aviation.
“A shape memory alloy starts off just like any other metal, except it has this wonderful property: it can remember shapes,” Benafan says. “You can bend it, you can deform it out of shape, and once you heat it, it returns to its shape.”
An alloy is a metal that’s created by combining two or more metallic elements. Shape memory alloys are functional metals. Unlike structural metals, which are fixed metal shapes used for construction or holding heavy objects, functional metals are valued for unique properties that enable them to carry out specific actions.
NASA often needs materials with special capabilities for use in aircraft and spacecraft components, spacesuits, and hardware designed for low-Earth orbit, the Moon, or Mars. But sometimes, the ideal material doesn’t exist. That’s where engineers like Benafan come in.
“We have requirements, and we come up with new materials to fulfill that function,” he said. The whole process begins with pen and paper, theories, and research to determine exactly what properties are needed and how those properties might be created. Then he and his teammates are ready to start making a new metal.
“It’s like a cooking show,” Benafan says. “We collect all the ingredients — in my case, the metals would be elements from the periodic table, like nickel, titanium, gold, copper, etc. — and we mix them together in quantities that satisfy the formula we came up with. And then we cook it.”
Othmane Benafan, a materials research engineer, develops a shape memory alloy in a laboratory at NASA’s Glenn Research Center in Cleveland. These elemental ingredients are melted in a container called a crucible, then poured into the required shape, such as a cylinder, plate, or tube. From there, it’s subjected to temperatures and pressures that shape and train the metal to change the way its atoms are arranged every time it’s heated or cooled.
Shape memory alloys created by Benafan and his colleagues have already proven useful in several applications. For example, the Shape Memory Alloy Reconfigurable Technology Vortex Generator (SMART VG) being tested on Boeing aircraft uses the torque generated by a heat-induced twisting motion to raise and lower a small, narrow piece of hardware installed on aircraft wings, resulting in reduced drag during cruise conditions. In space, the 2018 Advanced eLectrical Bus (ALBus) CubeSat technology demonstration mission included the use of a shape memory alloy to deploy the small satellite’s solar arrays and antennas. And Glenn’s Shape Memory Alloy Rock Splitters technology benefits mining and geothermal applications on Earth by breaking apart rocks without harming the surrounding environment. The shape memory alloy device is wrapped in a heater and inserted into a predrilled hole in the rock, and when the heater is activated, the alloy expands, creating intense pressure that drives the rock apart.
Benafan’s fascination with shape memory alloys started after he immigrated to the United States from Morocco at age 19. He began attending night classes at the Valencia Community College (now Valencia College), then went on to graduate from the University of Central Florida in Orlando. A professor did a demonstration on shape memory alloys and that changed Benafan’s life forever. Now, Benafan enjoys helping others understand related topics.
“Outside of work, one of the things I like to do most is make technology approachable to someone who may be interested but may not be experienced with it just yet. I do a lot of community outreach through camps or lectures in schools,” he said.
He believes a mentality of curiosity and a willingness to fail and learn are essential for aspiring engineers and encourages others to pursue their ideas and keep trying.
“You know, we grow up with that mindset of falling and standing up and trying again, and that same thing applies here,” Benafan said. “The idea is to be a problem solver. What are you trying to contribute? What problem do you want to solve to help humanity, to help Earth?”
To learn more about the wide variety of exciting and unexpected jobs at NASA, check out the Surprisingly STEM video series.
Explore More
3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
Article 3 hours ago 3 min read NASA Announces Winners of 2025 Student Launch Competition
Article 1 day ago 2 min read NASA Seeks Commercial Feedback on Space Communication Solutions
Article 1 day ago View the full article
-
By NASA
A NASA-sponsored team is creating a new approach to measure magnetic fields by developing a new system that can both take scientific measurements and provide spacecraft attitude control functions. This new system is small, lightweight, and can be accommodated onboard the spacecraft, eliminating the need for the boom structure that is typically required to measure Earth’s magnetic field, thus allowing smaller, lower-cost spacecraft to take these measurements. In fact, this new system could not only enable small spacecraft to measure the magnetic field, it could replace the standard attitude control systems in future spacecraft that orbit Earth, allowing them to provide the important global measurements that enable us to understand how Earth’s magnetic field protects us from dangerous solar particles.
Photo of the aurora (taken in Alaska) showing small scale features that are often present. Credit: NASA/Sebastian Saarloos
Solar storms drive space weather that threatens our many assets in space and can also disrupt Earth’s upper atmosphere impacting our communications and power grids. Thankfully, the Earth’s magnetic field protects us and funnels much of that energy into the north and south poles creating aurorae. The aurorae are a beautiful display of the electromagnetic energy and currents that flow throughout the Earth’s space environment. They often have small-scale magnetic features that affect the total energy flowing through the system. Observing these small features requires multiple simultaneous observations over a broad range of spatial and temporal scales, which can be accomplished by constellations of small spacecraft.
To enable such constellations, NASA is developing an innovative hybrid magnetometer that makes both direct current (DC) and alternating current (AC) magnetic measurements and is embedded in the spacecraft’s attitude determination and control system (ADCS)—the system that enables the satellite to know and control where it is pointing. High-performance, low SWAP+C (low-size, weight and power + cost) instruments are required, as is the ability to manufacture and test large numbers of these instruments within a typical flight build schedule. Future commercial or scientific satellites could use these small, lightweight embedded hybrid magnetometers to take the types of measurements that will expand our understanding of space weather and how Earth’s magnetic field responds to solar storms
It is typically not possible to take research-quality DC and AC magnetic measurements using sensors within an ADCS since the ADCS is inside the spacecraft and near contaminating sources of magnetic noise such as magnetic torque rods—the electromagnets that generate a magnetic field and push against the Earth’s magnetic field to control the orientation of a spacecraft. Previous missions that have flown both DC and AC magnetometers placed them on long booms pointing in opposite directions from the satellite to keep the sensors as far from the spacecraft and each other as possible. In addition, the typical magnetometer used by an ADCS to measure the orientation of the spacecraft with respect to the geomagnetic field does not sample fast enough to measure the high-frequency signals needed to make magnetic field observations.
A NASA-sponsored team at the University of Michigan is developing a new hybrid magnetometer and attitude determination and control system (HyMag-ADCS) that is a low-SWAP single package that can be integrated into a spacecraft without booms. HyMag-ADCS consists of a three-axis search coil AC magnetometer and a three-axis Quad-Mag DC magnetometer. The Quad-Mag DC magnetometer uses machine learning to enable boomless DC magnetometery, and the hybrid search-coil AC magnetometer includes attitude determination torque rods to enable the single 1U volume (103 cm) system to perform ADCS functions as well as collect science measurements.
The magnetic torque rod and search coil sensor (left) and the Quad-Mag magnetometer prototype (right). Credit: Mark Moldwin The HyMag-ADCS team is incorporating the following technologies into the system to ensure success.
Quad-Mag Hardware: The Quad-Mag DC magnetometer consists of four magneto-inductive magnetometers and a space-qualified micro-controller mounted on a single CubeSat form factor (10 x 10 cm) printed circuit board. These two types of devices are commercially available. Combining multiple sensors on a single board increases the instrument’s sensitivity by a factor of two compared to using a single sensor. In addition, the distributed sensors enable noise identification on small satellites, providing the science-grade magnetometer sensing that is key for both magnetic field measurements and attitude determination. The same type of magnetometer is part of the NASA Artemis Lunar Gateway Heliophysics Environmental and Radiation Measurement Experiment Suite (HERMES) Noisy Environment Magnetometer in a Small Integrated System (NEMISIS) magnetometer scheduled for launch in early 2027.
Dual-use Electromagnetic Rods: The HyMag-ADCS team is using search coil electronics and torque rod electronics that were developed for other efforts in a new way. Use of these two electronics systems enables the electromagnetic rods in the HyMag-ADCS system to be used in two different ways—as torque rods for attitude determination and as search coils to make scientific measurements. The search coil electronics were designed for ground-based measurements to observe ultra-low frequency signals up to a few kHz that are generated by magnetic beacons for indoor localization. The torque rod electronics were designed for use on CubeSats and have flown on several University of Michigan CubeSats (e.g., CubeSat-investigating Atmospheric Density Response to Extreme driving [CADRE]). The HyMag-ADCS concept is to use the torque rod electronics as needed for attitude control and use the search coil electronics the rest of the time to make scientific AC magnetic field measurements.
Machine Learning Algorithms for Spacecraft Noise Identification: Applying machine learning to these distributed sensors will autonomously remove noise generated by the spacecraft. The team is developing a powerful Unsupervised Blind Source Separation (UBSS) algorithm and a new method called Wavelet Adaptive Interference Cancellation for Underdetermined Platforms (WAIC-UP) to perform this task, and this method has already been demonstrated in simulation and the lab.
The HyMag-ADCS system is early in its development stage, and a complete engineering design unit is under development. The project is being completed primarily with undergraduate and graduate students, providing hands-on experiential training for upcoming scientists and engineers.
Early career electrical engineer Julio Vata and PhD student Jhanene Heying-Melendrez with art student resident Ana Trujillo Garcia in the magnetometer lab testing prototypes. Credit: Mark Moldwin For additional details, see the entry for this project on NASA TechPort .
Project Lead: Prof. Mark Moldwin, University of Michigan
Sponsoring Organization: NASA Heliophysics Division’s Heliophysics Technology and Instrument Development for Science (H-TIDeS) program.
Share
Details
Last Updated Jun 17, 2025 Related Terms
Technology Highlights Heliophysics Science Mission Directorate Science-enabling Technology Explore More
2 min read Hubble Studies a Spiral’s Supernova Scene
Article
4 days ago
5 min read NASA Launching Rockets Into Radio-Disrupting Clouds
Article
5 days ago
2 min read Hubble Captures Starry Spectacle
Article
2 weeks ago
View the full article
-
By NASA
2 min read
Explore Our Dynamic Sun!
from NASA’s Heliophysics Education Activation Team (NASA HEAT) and the Astronomical Society of the Pacific/Night Sky Network
Have you ever wondered about what the Sun is made of? Or why do you get sunburned on even cloudy days? NASA’s new Explore the Sun toolkit brings the wonders of solar science to you, offering answers to these questions and more!
Solar images from NASA’s Solar Dynamics Observatory show different features on the Sun, including sunspots in the visible light spectrum. Filaments and prominences can be seen in hydrogen-alpha, coronal mass ejections in X-ray, and details in ultraviolet light. On the right side of the banner, aurorae observed on Earth by the International Space Station is shown, along with aurorae on other planets as seen by NASA’s Hubble Space Telescope and James Webb Space Telescope. NASA/Astronomical Society of the Pacific A collaboration between NASA’s Heliophysics Education Activation Team (NASA HEAT) and the Astronomical Society of the Pacific’s Night Sky Network program, this resource was developed for informal educators, amateur astronomers, and astronomy enthusiasts alike, providing engaging activities for anyone eager to learn more about our nearest star.
Whether you’re hosting a solar viewing event or an indoor presentation, the Our Dynamic Sun toolkit provides easy-to-use materials designed to spark curiosity. Each card in the set pairs NASA images with clear explanations for each topic:
“What color is the Sun?” (hint: it’s not yellow!) “How does the Sun affect us here on Earth?” “When will the Sun die?” These cards not only answer common questions the public may have, but also highlight how NASA’s solar research helps us understand space weather, solar storms, and their impacts on our daily lives.
Bring the Sun’s story to your community and inspire the next generation of explorers. You can download this free Our Dynamic Sun toolkit here: https://bit.ly/suntoolkit
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
What happens when the universe’s most magnetic object shines with the power of 1000 Suns in a matter of seconds? Thanks to NASA’s IXPE (Imaging X-ray Polarimetry Explorer), a mission in collaboration with ASI (Italian Space Agency), scientists are one step closer to understanding this extreme event.
Magnetars are a type of young neutron star – a stellar remnant formed when a massive star reaches the end of its life and collapses in on itself, leaving behind a dense core roughly the mass of the Sun, but squashed down to the size of a city. Neutron stars display some of the most extreme physics in the observable universe and present unique opportunities to study conditions that would otherwise be impossible to replicate in a laboratory on Earth.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Illustrated magnetar flyby sequence showing magnetic field lines. A magnetar is a type of isolated neutron star, the crushed, city-size remains of a star many times more massive than our Sun. Their magnetic fields can be 10 trillion times stronger than a refrigerator magnet's and up to a thousand times stronger than a typical neutron star's. This represents an enormous storehouse of energy that astronomers suspect powers magnetar outbursts.NASAs Goddard Space Flight Center/Chris Smith (USRA) The magnetar 1E 1841-045, located in the remnants of a supernova (SNR Kes 73) nearly 28,000 light-years from Earth, was observed to be in a state of outburst by NASA’s Swift, Fermi, and NICER telescopes on August 21, 2024.
A few times a year, the IXPE team approves requests to interrupt the telescope’s scheduled observations to instead focus on unique and unexpected celestial events. When magnetar 1E 1841-045 entered this brighter, active state, scientists decided to redirect IXPE to obtain the first-ever polarization measurements of a flaring magnetar.
Magnetars have magnetic fields several thousand times stronger than most neutron stars and host the strongest magnetic fields of any known object in the universe. Disturbances to their extreme magnetic fields can cause a magnetar to release up to a thousand times more X-ray energy than it normally would for several weeks. This enhanced state is called an outburst, but the mechanisms behind them are still not well understood.
Through IXPE’s X-ray polarization measurements, scientists may be able to get closer to uncovering the mysteries of these events. Polarization carries information about the orientation and alignment of the emitted X-ray light waves; the higher the degree of polarization, the more the X-ray waves are traveling in sync, akin to a tightly choreographed dance performance. Examining the polarization characteristics of magnetars reveals clues about the energetic processes producing the observed photons as well as the direction and geometry of the magnetar magnetic fields.
The IXPE results, aided by observations from NASA’s NuSTAR and NICER telescopes, show that the X-ray emissions from 1E 1841-045 become more polarized at higher energy levels while still maintaining the same direction of propagation. A significant contribution to this high polarization degree comes from the hard X-ray tail of 1E 1841-045, an energetic magnetospheric component dominating the highest photon energies observed by IXPE. “Hard X-rays” refer to X-rays with shorter wavelengths and higher energies than “soft X-rays.” Although prevalent in magnetars, the mechanics driving the production of these high energy X-ray photons are still largely unknown. Several theories have been proposed to explain this emission, but now the high polarization associated with these hard X-rays provide further clues into their origin.
This illustration depicts IXPE’s measurements of X-ray polarization emitting from magnetar 1E 1841-045 located within the Supernova Remnant Kes 73. At the time of observation, the magnetar was in a state of outburst and emitting the luminosity equivalent to 1000 suns. By studying the X-ray polarization of magnetars experiencing an outburst scientists may be able to get closer to uncovering the mysteries of these events. Michela Rigoselli/Italian National Institute of Astrophysics The results are presented in two papers published in The Astrophysical Journal Letters, one led by Rachael Stewart, a PhD student at George Washington University, and the other by Michela Rigoselli of the Italian National Institute of Astrophysics..
“This unique observation will help advance the existing models aiming to explain magnetar hard X-ray emission by requiring them to account for this very high level of synchronization we see among these hard X-ray photons,” said Stewart. “This really showcases the power of polarization measurements in constraining physics in the extreme environments of magnetars.”
Rigoselli, lead author of the companion paper, added, “It will be interesting to observe 1E 1841-045 once it has returned to its quiescent, baseline state to follow the evolution of its polarimetric properties.”
IXPE is a space observatory built to discover the secrets of some of the most extreme objects in the universe. Launched in December 2021 from NASA’s Kennedy Space Center on a Falcon 9 rocket, the IXPE mission is part of NASA’s Small Explorer series.
IXPE, which continues to provide unprecedented data enabling groundbreaking discoveries about celestial objects across the universe, is a joint NASA and Italian Space Agency mission with partners and science collaborators in 12 countries. IXPE is led by NASA’s Marshall Space Flight Center in Huntsville, Alabama. BAE Systems, headquartered in Falls Church, Virginia, manages spacecraft operations together with the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder.
Learn more about IXPE’s ongoing mission here:
https://www.nasa.gov/ixpe
Media Contact
Elizabeth Landau
NASA Headquarters
elizabeth.r.landau@nasa.gov
202-358-0845
Lane Figueroa
Marshall Space Flight Center, Huntsville, Ala.
lane.e.figueroa@nasa.gov
256.544.0034
About the Author
Beth Ridgeway
Share
Details
Last Updated Jun 05, 2025 EditorBeth RidgewayContactLane FigueroaElizabeth R. Landauelizabeth.r.landau@nasa.govLocationMarshall Space Flight Center Related Terms
IXPE (Imaging X-ray Polarimetry Explorer) Astrophysics Astrophysics Division Marshall Astrophysics Marshall Science Research & Projects Marshall Space Flight Center The Universe Explore More
5 min read 3 Black Holes Caught Eating Massive Stars in NASA Data
Black holes are invisible to us unless they interact with something else. Some continuously eat…
Article 22 hours ago 4 min read Core Components for NASA’s Roman Space Telescope Pass Major Shake Test
Article 23 hours ago 5 min read NASA’s Webb Rounds Out Picture of Sombrero Galaxy’s Disk
After capturing an image of the iconic Sombrero galaxy at mid-infrared wavelengths in late 2024,…
Article 2 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
New research suggests vast surface features on Venus called coronae continue to be shaped by tectonic processes. Observations of these features from NASA’s Magellan mission include, clockwise from top left, Artemis Corona, Quetzalpetlatl Corona, Bahet Corona, and Aine Corona.NASA/JPL-Caltech Using archival data from the mission, launched in 1989, researchers have uncovered new evidence that tectonic activity may be deforming the planet’s surface.
Vast, quasi-circular features on Venus’ surface may reveal that the planet has ongoing tectonics, according to new research based on data gathered more than 30 years ago by NASA’s Magellan mission. On Earth, the planet’s surface is continually renewed by the constant shifting and recycling of massive sections of crust, called tectonic plates, that float atop a viscous interior. Venus doesn’t have tectonic plates, but its surface is still being deformed by molten material from below.
Seeking to better understand the underlying processes driving these deformations, the researchers studied a type of feature called a corona. Ranging in size from dozens to hundreds of miles across, a corona is most often thought to be the location where a plume of hot, buoyant material from the planet’s mantle rises, pushing against the lithosphere above. (The lithosphere includes the planet’s crust and the uppermost part of its mantle.) These structures are usually oval, with a concentric fracture system surrounding them. Hundreds of coronae are known to exist on Venus.
Published in the journal Science Advances, the new study details newly discovered signs of activity at or beneath the surface shaping many of Venus’ coronae, features that may also provide a unique window into Earth’s past. The researchers found the evidence of this tectonic activity within data from NASA’s Magellan mission, which orbited Venus in the 1990s and gathered the most detailed gravity and topography data on the planet currently available.
“Coronae are not found on Earth today; however, they may have existed when our planet was young and before plate tectonics had been established,” said the study’s lead author, Gael Cascioli, assistant research scientist at the University of Maryland, Baltimore County, and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “By combining gravity and topography data, this research has provided a new and important insight into the possible subsurface processes currently shaping the surface of Venus.”
This artist’s concept of the large Quetzalpetlatl Corona located in Venus’ southern hemisphere depicts active volcanism and a subduction zone, where the foreground crust plunges into the planet’s interior. A new study suggests coronae are the locations of several types of tectonic activity.NASA/JPL-Caltech/Peter Rubin As members of NASA’s forthcoming VERITAS (Venus Emissivity, Radio science, InSAR, Topography, and Spectroscopy) mission, Cascioli and his team are particularly interested in the high-resolution gravity data the spacecraft will provide. Study coauthor Erwan Mazarico, also at Goddard, will co-lead the VERITAS gravity experiment when the mission launches no earlier than 2031.
Mystery Coronae
Managed by NASA’s Jet Propulsion Laboratory in Southern California, Magellan used its radar system to see through Venus’ thick atmosphere and map the topography of its mountains and plains. Of the geological features the spacecraft mapped, coronae were perhaps the most enigmatic: It wasn’t clear how they formed. In the years since, scientists have found many coronae in locations where the planet’s lithosphere is thin and heat flow is high.
“Coronae are abundant on Venus. They are very large features, and people have proposed different theories over the years as to how they formed,” said coauthor Anna Gülcher, Earth and planetary scientist at the University of Bern in Switzerland. “The most exciting thing for our study is that we can now say there are most likely various and ongoing active processes driving their formation. We believe these same processes may have occurred early in Earth’s history.”
The researchers developed sophisticated 3D geodynamic models that demonstrate various formation scenarios for plume-induced coronae and compared them with the combined gravity and topography data from Magellan. The gravity data proved crucial in helping the researchers detect less dense, hot, and buoyant plumes under the surface — information that couldn’t be discerned from topography data alone. Of the 75 coronae studied, 52 appear to have buoyant mantle material beneath them that is likely driving tectonic processes.
One key process is subduction: On Earth, it happens when the edge of one tectonic plate is driven beneath the adjacent plate. Friction between the plates can generate earthquakes, and as the old rocky material dives into the hot mantle, the rock melts and is recycled back to the surface via volcanic vents.
These illustrations depict various types of tectonic activity thought to persist beneath Venus’ coronae. Lithospheric dripping and subduction are shown at top; below are and two scenarios where hot plume material rises and pushes against the lithosphere, potentially driving volcanism above it.Anna Gülcher, CC BY-NC On Venus, a different kind of subduction is thought to occur around the perimeter of some coronae. In this scenario, as a buoyant plume of hot rock in the mantle pushes upward into the lithosphere, surface material rises and spreads outward, colliding with surrounding surface material and pushing that material downward into the mantle.
Another tectonic process known as lithospheric dripping could also be present, where dense accumulations of comparatively cool material sink from the lithosphere into the hot mantle. The researchers also identify several places where a third process may be taking place: A plume of molten rock beneath a thicker part of the lithosphere potentially drives volcanism above it.
Deciphering Venus
This work marks the latest instance of scientists returning to Magellan data to find that Venus exhibits geologic processes that are more Earth-like than originally thought. Recently, researchers were able to spot erupting volcanoes, including vast lava flows that vented from Maat Mons, Sif Mons, and Eistla Regio in radar images from the orbiter.
While those images provided direct evidence of volcanic action, the authors of the new study will need sharper resolution to draw a complete picture about the tectonic processes driving corona formation. “The VERITAS gravity maps of Venus will boost the resolution by at least a factor of two to four, depending on location — a level of detail that could revolutionize our understanding of Venus’ geology and implications for early Earth,” said study coauthor Suzanne Smrekar, a planetary scientist at JPL and principal investigator for VERITAS.
Managed by JPL, VERITAS will use a synthetic aperture radar to create 3D global maps and a near-infrared spectrometer to figure out what the surface of Venus is made of. Using its radio tracking system, the spacecraft will also measure the planet’s gravitational field to determine the structure of Venus’ interior. All of these instruments will help pinpoint areas of activity on the surface.
For more information about NASA’s VERITAS mission, visit:
https://science.nasa.gov/mission/veritas/
News Media Contacts
Ian J. O’Neill
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-2649
ian.j.oneill@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2025-068
Share
Details
Last Updated May 14, 2025 Related Terms
Magellan Jet Propulsion Laboratory Planetary Science Venus VERITAS (Venus Emissivity, Radio Science, InSAR, Topography & Spectroscopy) Explore More
6 min read NASA Studies Reveal Hidden Secrets About Interiors of Moon, Vesta
Article 3 hours ago 5 min read NASA’s Europa Clipper Captures Mars in Infrared
Article 2 days ago 3 min read NASA Study Reveals Venus Crust Surprise
New details about the crust on Venus include some surprises about the geology of Earth’s…
Article 5 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.