Members Can Post Anonymously On This Site
Linda Moulton Howe on Mystery Booms - Secret Hypersonic Planes? And much more...
-
Similar Topics
-
By European Space Agency
Today, at the Living Planet Symposium, ESA revealed the first stunning images from its groundbreaking Biomass satellite mission – marking a major leap forward in our ability to understand how Earth’s forests are changing and exactly how they contribute to the global carbon cycle. But these inaugural glimpses go beyond forests. Remarkably, the satellite is already showing potential to unlock new insights into some of Earth’s most extreme environments.
View the full article
-
By USH
Since November 2024, strange blinking lights have been reported worldwide, an unexplained phenomenon that’s left many puzzled. MrMBB333 believes he may have found a connection.
Also known as electrical pollution, dirty electricity refers to high-frequency voltage spikes that ride along standard power lines. These rogue signals, forms of electromagnetic interference (EMI), can spread through our infrastructure, causing devices to glitch or behave unpredictably.
If this interference is appearing globally, the source might be something massive, possibly deep within Earth’s core. Rogue frequencies from the core could travel up and interact with power grids, solar systems, and transmission lines, triggering widespread anomalies.
Supporting this idea is a discovery from NASA’s ANITA project in Antarctica. While searching for cosmic neutrinos, scientists instead detected impossible radio signals rising from deep within Earth, signals that defy current physics.
According to current science, these waves should have been absorbed by the Earth’s crust long before reaching the detectors. But they weren’t.
When researchers checked their findings against other experiments, nothing lined up. This means they didn’t detect neutrinos, but something entirely unknown. Could this be a new kind of particle? A glitch in reality? Or something even stranger?
Although it is not known whether the strange radio signals detected deep beneath the Antarctic ice are related to the rogue signals believed to originate from Earth's core, MrMBB333 suggests there could be a connection. He proposes that similar forms of electromagnetic interference (EMI) might be disrupting global electronics and even contributing to the mysterious blinking light phenomenon.
Another possible factor at play is that the magnetic field is weakening as well as Solar Cycle 25 — the current 11-year cycle of solar activity marked by the Sun’s magnetic field reversal and increasing sunspot activity. This cycle began in December 2019 and is expected to reach its peak in 2025.
Therefore, could this solar phenomenon be interfering with the rogue electromagnetic signals from the Earth’s core are behind the strange blinking lights observed around the world?
If that’s the case, although I don’t recall the blinking light phenomenon ever appearing this intensely before, then the strange lights may begin to fade as Solar Cycle 25 winds down. Still, that doesn’t explain the origin of the mysterious radio signals rising from deep beneath Antarctica’s ice.
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA/Jacob Shaw A NASA system designed to measure temperature and strain on high-speed vehicles is set to make its first flights at hypersonic speeds – greater than Mach 5, or five times the speed of sound – when mounted to two research rockets launching this summer.
Technicians in the Environmental Laboratory at NASA’s Armstrong Flight Research Center in Edwards, California, used machines called shakers to perform vibration tests on the technology, known as a Fiber Optic Sensing System (FOSS), on March 26. The tests confirmed the FOSS could operate while withstanding the shaking forces of a rocket launch. Initial laboratory and flight tests in 2024 went well, leading to the recently tested system’s use on the U.S. Department of Defense coordinated research rockets to measure critical temperature safety data.
Hypersonic sensing systems are crucial for advancing hypersonics, a potentially game-changing field in aeronautics. Capitalizing on decades of research, NASA is working to address critical challenges in hypersonic engine technology through its Advanced Air Vehicles Program.
Using FOSS, NASA will gather data on the strain placed on vehicles during flight, as well as temperature information, which helps engineers understand the condition of a rocket or aircraft. The FOSS system collects data using a fiber about the thickness of a human hair that collects data along its length, replacing heavier and bulkier traditional wire harnesses and sensors.
Jonathan Lopez and Allen Parker confer on the hypersonic Fiber Optic Sensor System at NASA’s Armstrong Flight Research Center in Edwards, California, on February 13, 2025. The system measures strain and temperature, critical safety data for hypersonic vehicles that travel five time the speed of sound.NASA/Steve Freeman “There is no reliable technology with multiple sensors on a single fiber in the hypersonic environment,” said Patrick Chan, FOSS project manager at Armstrong. “The FOSS system is a paradigm shift for hypersonic research, because it can measure temperature and strain.”
For decades, NASA Armstrong worked to develop and improve the system, leading to hypersonic FOSS, which originated in 2020. Craig Stephens, the Hypersonic Technology Project associate project manager at NASA Armstrong, anticipated a need for systems and sensors to measure temperature and strain on hypersonic vehicles.
“I challenged the FOSS team to develop a durable data collection system that had reduced size, weight, and power requirements,” Stephens said. “If we obtain multiple readings from one FOSS fiber, that means we are reducing the number of wires in a vehicle, effectively saving weight and space.”
The research work has continually made the system smaller and lighter. While a space-rated FOSS used in 2022 to collect temperature data during a NASA mission in low Earth orbit was roughly the size of a toaster, the hypersonic FOSS unit is about the size of two sticks of butter.
Jonathan Lopez and Nathan Rick prepare the hypersonic Fiber Optic Sensing System for vibration tests in the Environmental Laboratory at NASA’s Armstrong Flight Research Center in Edwards, California. Testing on a machine called a shaker proved that the system could withstand the severe vibration it will endure in hypersonic flight, or travel at five times the speed of sound.NASA/Jim Ross Successful Partnerships
To help advance hypersonic FOSS to test flights, NASA Armstrong Technology Transfer Office lead Ben Tomlinson orchestrated a partnership. NASA, the U.S. Air Force Test Pilot School in Edwards, California, and the U.S. Air Force’s 586th Flight Test Squadron at Holloman Air Force Base in New Mexico, agreed to a six-flight series in 2024.
The test pilot school selected an experiment comparing FOSS and traditional sensors, looking at the data the different systems produced.
The hypersonic FOSS was integrated into a beam fixed onto one end of a pod. It had weight on the other end of the beam so that it could move as the aircraft maneuvered into position for the tests. The pod fit under a T-38 aircraft that collected strain data as the aircraft flew.
“The successful T-38 flights increased the FOSS technology readiness,” Tomlinson said. “However, a test at hypersonic speed will make FOSS more attractive for a United States business to commercialize.”
April Torres, from left, Cryss Punteney, and Karen Estes watch as data flows from the hypersonic Fiber Optic Sensing System at NASA’s Armstrong Flight Research Center in Edwards, California. Testing on a machine called a shaker proved that the system could withstand the severe vibration it will endure in hypersonic flight, or travel at five times the speed of sound.NASA/Jim Ross New Opportunities
After the experiment with the Air Force, NASA’s hypersonic technology team looked for other opportunities to advance the miniaturized version of the system. That interest led to the upcoming research rocket tests in coordination with the Department of Defense.
“We have high confidence in the system, and we look forward to flying it in hypersonic flight and at altitude,” Chan said.
A hypersonic Fiber Optic Sensing System, developed at NASA’s Armstrong Flight Research Center in Edwards, California, is ready for a test flight on a T-38 at the U.S. Air Force 586th Flight Test Squadron at Holloman Air Force Base in New Mexico. NASA Armstrong, the flight test squadron, and the U.S. Air Force Test Pilot School in Edwards, California, partnered for the test. From left are Earl Adams, Chathu Kuruppu, Colby Ferrigno, Allen Parker, Patrick Chan, Anthony Peralta, Ben Tomlinson, Jonathan Lopez, David Brown, Lt. Col. Sean Siddiqui, Capt. Nathaniel Raquet, Master Sgt. Charles Shepard, and Greg Talbot.U.S. Air Force/Devin Lopez Share
Details
Last Updated Jun 18, 2025 EditorDede DiniusContactJay Levinejay.levine-1@nasa.govLocationArmstrong Flight Research Center Related Terms
Armstrong Flight Research Center Advanced Air Vehicles Program Aeronautics Aeronautics Research Mission Directorate Hypersonic Technology Explore More
5 min read NASA F-15s Validate Tools for Quesst Mission
Article 1 week ago 2 min read From Garment Industry to NASA: Meet Systems Engineer Daniel Eng
Article 2 weeks ago 9 min read ARMD Research Solicitations (Updated June 6)
Article 2 weeks ago
Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
In today’s crowded digital landscape, cutting through the noise is paramount for any organization trying to connect with its audience. Recognizing this, NASA has embarked on a significant initiative to streamline its extensive social media presence, aiming to create a more unified and impactful digital voice for its groundbreaking work.
The National Aeronautics and Space Act of 1958 tasked NASA with providing the “widest practicable and appropriate dissemination of information concerning its activities and the results thereof.” The 2025 social media consolidation project is designed to fulfill this mandate more effectively. By reducing the number of agency accounts, NASA seeks to make its work more accessible to the public, avoiding the potential for oversaturation or confusion that can arise from numerous social media accounts bearing the NASA name and insignia.
Over time, NASA’s social media footprint has expanded considerably, growing to over 400 individual accounts across 15 platforms. While this allowed for highly specialized updates, it also created a fragmented digital landscape that was challenging for both the public to navigate and for NASA to manage efficiently.
To ensure a more cohesive and impactful digital presence, the consolidation project involved a thorough evaluation of every existing account. Accounts were assessed based on several key considerations, including their compliance with federal and agency policies, their activity within the last year, their unique value proposition, their level of two-way engagement with the public, and their approach to publishing new, original content versus reposting existing material.
Based on this comprehensive evaluation, accounts will be handled in one of a few ways:
Deactivate/Sunset: Many accounts that publish content that can be effectively absorbed by broader channels will be sunset. This means they will cease active posting and eventually become inactive or removed from public view by the platform. Merge: Content and followers from some specialized accounts will be merged into larger, thematic accounts or NASA’s flagship channels. This ensures valuable information still reaches the intended audience, but through fewer, more prominent feeds. Rebrand: A small number of accounts may be rebranded to better align with the new strategic framework, reflecting a broader scope or a more direct connection to core NASA initiatives.
This initiative builds upon the success of previous digital transformation projects within the agency, such as the Science Mission Directorate’s social media consolidation project in 2019 and website modernization in 2023. Both efforts resulted in streamlined processes, modernized content, and more focused communications, and NASA anticipates similar positive outcomes from this current social media consolidation.
Ultimately, this strategic shift underscores a broader trend for NASA’s digital communication strategy: the move toward quality over quantity. For NASA, it’s about making vital information more accessible and digestible, ensuring the agency’s awe-inspiring work resonates deeply with a global audience. The future of space communication promises to be more focused, more powerful, and even more inspiring.
References:
Blog posted by Dr. Z
Statement on NASA’s social media directory
Web, app, and NASA+ transformation
View the full article
-
By Space Force
Vandenberg Space Force Base stands as a vital hub where Guardians and Airmen oversee launches that safeguard U.S. interests and uphold America’s edge in the space domain.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.