Jump to content

Recommended Posts

Posted
Australian researchers have discovered a strange spinning object in the Milky Way they say is unlike anything astronomers have ever seen. 

The object, first spotted by a university student working on his undergraduate thesis, releases a huge burst of radio energy three times every hour. 

AVvXsEjRZVEmuJKf9LHr1j0QZQLdiTUZZkrzW2N1wnB5RAmMwGEbOAqAjZwlKqW4vLZheRrfTA4Z9P2dghTRhes9Cx-tOQo6CqptMAwEIgeCHs0ZCUMHZa-nQPJfS8g4PpX0adbQ0ISuXfwhWdWaVudBoQplPkwqHHNYxg7r35I1EZYkk1F0v5BhDRneZ3kTwQ=w640-h360

According to phys.org the pulse comes "every 18.18 minutes, like clockwork," said astrophysicist Natasha Hurley-Walker, who led the investigation after the student's discovery, using a telescope in the Western Australian outback known as the Murchison Widefield Array. 

While there are other objects in the universe that switch on and off, such as pulsars, Hurley-Walker said 18.18 minutes is a frequency that has never been observed before. 

If you do all of the mathematics, you find that they shouldn't have enough power to produce these kind of radio waves every 20 minutes, it just shouldn't be possible the astrophysicist said. 

The object may be something researchers have theorized could exist but have never seen called an "ultra-long period magnetar". It could also be a white dwarf, a remnant of a collapsed star, but that's quite unusual as well. 

On the question of whether the powerful, consistent radio signal from space could have been sent by some other life form, Hurley-Walker conceded that this is not an artificial signal. 

But it is remarkable that the pulse comes every 18.18 minutes like clockwork!

It seems that this object is in relation with time and space, related to the number 9 which is a hidden code that reveals the highest truth of all and is encoded into the construction of our universe. 

Pulse mystery object comes every 18.18 minutes:
Now look
Pulse 18.18 minutes: 1+8-1+8 = 9+9=18=1+8=9 
Pulse 36.36 minutes: 3+6-3+6 = 9+9=18=1+8=9 
Pulse 54.54 minutes: 5+4-5+4 = 9+9=18=1+8=9 

And did you know that the; 
Moon diameter is 2160 miles: 2+1+6+0=9 
Earth diameter is 7920 miles: 7+9+2+0=18 =1+8=9 
Sun diameter is 864 000 miles: 8+6+4=18=1+8=9 
Speed of light is 186,624 miles per second:1+8+6+6+2+4=27 =2+7=9 
and about time;
1440 minutes a day:1+4+4+0=9 
86400 seconds a day: 8+6+4+0+0=18=1+8+0+0=9 
10080 minutes in a week:1+0+0+8+0=9 
525600 minutes in a year:5+2+6+0+0=18=1+8=9 

So, if the number 9 is in relation with space and time then is it a coincidence that this mysterious object emits a radio signal every 18.18 minutes, no it seems to be well calculated by intelligent design possible performed by an unknown higher power of the distant past. 

Read more about the hidden universal code 9 at: 



View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Projects Highlights Publications NASA Citizen Scientists Science Activation Resources 2 min read
      Amateur Radio Scientists Shine at the 2025 HamSCI Workshop
      A collage of Posters from HamSCI’s March workshop. You can read them all online! Love Ham Radio? The HamSCI project fosters collaboration between amateur radio operators and professional researchers. Its goals are to advance scientific research and understanding through amateur radio activities, encourage the development of modern technologies to support this research, and provide educational opportunities for the amateur community and the public. 
      HamSCI held its annual Workshop, ‘HamSCI’s Big Year’, at the New Jersey Institute of Technology in late March. Over 100 members of the HamSCI community attended: researchers, students (secondary through graduate level), and citizen scientist volunteers. Over the two-day event, in-person and virtual participants experienced twenty-five talks on topics ranging from analysis of HamSCI’s 2023/24 Festivals of Eclipse Ionospheric Science events to space weather observations made during the May 10, 2024 geomagnetic superstorm.
      The Workshop hosted a variety of Keynote and Invited Tutorial speakers, including distinguished scientists and leaders in the Amateur (ham) Radio community.  The Workshop concluded with a poster session, featuring current research, ongoing educational activities, and concepts for future events involving Sun-space-Earth science topics.  Posters were submitted from the US, Brazil, Egypt, the United Kingdom, and Turkey.
      Explore the workshop presentations and posters.  Videos of conference presentations will be available at the HamSCI website in a few months.
      HamSCI is supported by NASA, the National Science Foundation, and the Amateur Radio Digital Communications (ARDC) foundation.
      Share








      Details
      Last Updated May 01, 2025 Related Terms
      Citizen Science Get Involved Heliophysics Explore More
      8 min read How to Contribute to Citizen Science with NASA


      Article


      2 days ago
      3 min read Help Classify Galaxies Seen by NASA’s James Webb Space Telescope!


      Article


      2 days ago
      3 min read Nine Finalists Advance in NASA’s Power to Explore Challenge


      Article


      1 week ago
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      As associate administrator for NASA’s Space Operations Mission Directorate Ken Bowersox puts it, “nothing happens without communications.”  
      And effective communications require the use of radio waves.  
      None of NASA’s exciting science and engineering endeavors would be possible without the use of radio waves to send data, communications, and commands between researchers or flight controllers and their flight platforms or instruments.  
      Reflecting on his time as a pilot, commander, and mission specialist during the Space Shuttle Program, Bowersox says, “If you’re not there physically, you can’t be a part of the team. But if you’re getting the data, whether it’s video, telemetry data with states of switches, or individual parameters on temperatures or pressures, then you can act on it and provide information to the spacecraft team so they can do the right thing in their operation.”  
      These vital data and communications functions, as well as the gathering of valuable scientific data through remote sensing applications, all use radio frequencies (RF) within the electromagnetic spectrum. NASA centers and facilities also use the RF spectrum to support their everyday operations, including the walkie-talkies used by security guards, air traffic control systems around airfields, and even office Wi-Fi routers and wireless keyboards.  
      Nothing happens without communications.
      Ken Bowersox
      NASA Astronaut & Associate Administrator for NASA's Space Operations Mission Directorate
      All of NASA’s uses of the RF spectrum are shared, with different radio services supporting other kinds of uses. Service allocation is a fundamental concept in spectrum regulation and defines how the spectrum is shared between different types of applications. A service allocation defines ranges, or bands, of radio frequencies that can be used by a particular type of radio service. For example, a television broadcasting satellite operates in frequency bands allocated to the broadcasting satellite service, terrestrial cellular services operate in bands allocated for the mobile service, and the communications antennas on the International Space Station (ISS) operate in bands allocated to space operations service.   
      However, an allocation is not a license to operate — it does not authorize a specific system or operator to use particular frequencies. Such authority is granted through domestic and international regulatory processes.  
      Most frequency bands of the RF spectrum are shared, and each frequency band typically has two or more radio services allocated to it. Careful spectrum regulation, planning, and management aim to identify mutually compatible services to share frequency bands while limiting its negative impacts. 
      NASA’s Most Notable Spectrum Uses 
      Many of NASA’s most notable uses of spectrum rely on the following service allocations: 
      Earth exploration-satellite service    Space research service      Space operations service  Inter-satellite service  Note that allocations in the Earth exploration-satellite service and the space research service are designated either for communications links in the Earth-to-space, space-to-Earth, or space-to-space directions or designated for active or passive sensing of Earth or celestial objects (respectively) to differentiate the types of uses within the service and afford the requisite protections.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Watch the video to learn more about how each kind of system uses the radio frequency spectrumNASA Learn how NASA manages its use of the RF spectrum.  Learn about who NASA collaborates with to inform the spectrum regulations of the future. Learn about the scientific principles of the electromagnetic spectrum, including radio waves. Share
      Details
      Last Updated Apr 23, 2025 Related Terms
      General Communicating and Navigating with Missions Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Curiosity Mars rover sees its tracks receding into the distance at a site nicknamed “Ubajara” on April 30, 2023. This site is where Curiosity made the discovery of siderite, a mineral that may help explain the fate of the planet’s thicker ancient atmosphere.Credit: NASA/JPL-Caltech/MSSS New findings from NASA’s Curiosity Mars rover could provide an answer to the mystery of what happened to the planet’s ancient atmosphere and how Mars has evolved over time.
      Researchers have long believed that Mars once had a thick, carbon dioxide-rich atmosphere and liquid water on the planet’s surface. That carbon dioxide and water should have reacted with Martian rocks to create carbonate minerals. Until now, though, rover missions and near-infrared spectroscopy analysis from Mars-orbiting satellites haven’t found the amounts of carbonate on the planet’s surface predicted by this theory.
      Reported in an April paper in Science, data from three of Curiosity’s drill sites revealed the presence of siderite, an iron carbonate mineral, within the sulfate-rich rocky layers of Mount Sharp in Mars’ Gale Crater.
      “The discovery of abundant siderite in Gale Crater represents both a surprising and important breakthrough in our understanding of the geologic and atmospheric evolution of Mars,” said Benjamin Tutolo, associate professor at the University of Calgary, Canada, and lead author of the paper.
      To study the Red Planet’s chemical and mineral makeup, Curiosity drills three to four centimeters down into the subsurface, then drops the powdered rock samples into its CheMin instrument. The instrument, led by NASA’s Ames Research Center in California’s Silicon Valley, uses X-ray diffraction to analyze rocks and soil. CheMin’s data was processed and analyzed by scientists at the Astromaterials Research and Exploration Science (ARES) Division at NASA’s Johnson Space Center in Houston.
      “Drilling through the layered Martian surface is like going through a history book,” said Thomas Bristow, research scientist at NASA Ames and coauthor of the paper. “Just a few centimeters down gives us a good idea of the minerals that formed at or close to the surface around 3.5 billion years ago.”
      The discovery of this carbonate mineral in rocks beneath the surface suggests that carbonate may be masked by other minerals in near-infrared satellite analysis. If other sulfate-rich layers across Mars also contain carbonates, the amount of stored carbon dioxide would be a fraction of that needed in the ancient atmosphere to create conditions warm enough to support liquid water. The rest could be hidden in other deposits or have been lost to space over time.
      In the future, missions or analyses of other sulfate-rich areas on Mars could confirm these findings and help us better understand the planet’s early history and how it transformed as its atmosphere was lost.
      Curiosity, part of NASA’s Mars Exploration Program (MEP) portfolio, was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington.
      For more information on Curiosity, visit: 
      https://science.nasa.gov/mission/msl-curiosity
      News Media Contacts 
      Karen Fox / Molly Wasser 
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov 

      Andrew Good 
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Share
      Details
      Last Updated Apr 17, 2025 Related Terms
      Ames Research Center Astromaterials Curiosity (Rover) General Jet Propulsion Laboratory Mars Science Laboratory (MSL) Explore More
      7 min read NASA’s SpaceX 32nd Commercial Resupply Mission Overview
      NASA and SpaceX are targeting no earlier than 4:15 a.m. EDT on Monday, April 21,…
      Article 21 hours ago 6 min read NASA’s Chandra Releases New 3D Models of Cosmic Objects
      Article 24 hours ago 3 min read NASA Sees Progress on Blue Origin’s Orbital Reef Design Development
      Article 1 day ago Keep Exploring Discover Related Topics
      Curiosity Rover (MSL)
      Ames Research Center
      Mars
      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
      Curiosity Science Instruments
      Curiosity’s scientific instruments are the tools that bring us stunning images of Mars and ground-breaking discoveries.
      View the full article
    • By USH
      UVB-76, widely known by its nickname "The Buzzer," is a mysterious shortwave Russian radio station radio broadcasts in the world. It began broadcasting in the mid-1970s and is still active today, broadcasting cryptic signals at 4625 kHz. 
      This Russian shortwave station usual broadcast consists of a monotonous buzzing tone that occasionally breaks for cryptic voice messages in Russian. The station is widely believed to be operated by the Russian military, possibly as part of the Strategic Rocket Forces’ communication network. 
      The use of shortwave radio enables the signal to travel vast distances, potentially covering all of Russia and extending far beyond its borders. 
      Due to the high transmission power of UVB-76’s antenna, some theorize that the station’s signals could even reach outer space. This possibility opens the door to even more extraordinary speculation: that satellites might receive these signals and relay them to submarines, remote military units, or even unidentified aerial phenomena (UFOs). One theory even posits that UVB-76 could be part of an experimental system designed to scan or communicate with extraterrestrial life. 
      Under normal circumstances, UVB-76’s broadcasts are infrequent and minimal, just the repetitive buzz and the rare coded message. However, something highly unusual happened just ten hours ago. Within a single day, the station transmitted four coded voice messages, an event considered extremely rare and potentially significant. 
      These are the messages: NZHTI - 33 702 - NEPTUN - 66-52-20-75 NZHTI - 8002 361 - TIMUS - 56-85 NZHTI - 7000 0 8002 - LISOPLASH - 67-203-0808-0809 NZHTI - 62 505 - NUTOBAKS - 78 15 92 71 
      While the true meaning of these messages remains classified or unknown, some analysts believe they could be activation codes, operational signals, or test messages for military units. The repeated prefix "NZHTI" could be a call sign or an authentication marker. The names—NEPTUN, TIMUS, LISOPLASH, and NUTOBAKS, might refer to code-named operations, geographic regions, or military assets. The numeric sequences could represent coordinates, timestamps, or identification numbers. 
      Given the timing and unusual frequency of these messages, some suspect that UVB-76 is ramping up activity in preparation for a significant event. While there's no confirmation of any immediate threat, the sudden uptick in coded communications suggests that something serious could be developing. 
      Many experts believe UVB-76 is maintained as a wartime contingency channel, ready to relay commands in the event of nuclear war or a catastrophic loss of national communications. Its consistent presence, even during peacetime, supports the theory that it serves as an emergency or fail-safe communication method for defense forces. 
      The sudden surge of messages within one day suggests that something serious is happening, or about to. But who are they intended for? And more importantly, what comes next?" View the full article
    • By NASA
      3 Min Read NASA Successfully Acquires GPS Signals on Moon 
      An artist's concept of the Blue Ghost lunar lander receiving GNSS signals from Earth. Credits: NASA/Dave Ryan NASA and the Italian Space Agency made history on March 3, when the Lunar GNSS Receiver Experiment (LuGRE) became the first technology demonstration to acquire and track Earth-based navigation signals on the Moon’s surface.  
      The LuGRE payload’s success in lunar orbit and on the surface indicates that signals from the GNSS (Global Navigation Satellite System) can be received and tracked at the Moon. These results mean NASA’s Artemis missions, or other exploration missions, could benefit from these signals to accurately and autonomously determine their position, velocity, and time. This represents a steppingstone to advanced navigation systems and services for the Moon and Mars.  
      An artist’s concept of the LuGRE payload on Blue Ghost and its three main records in transit to the Moon, in lunar orbit and on the Moon’s surface.NASA/Dave Ryan “On Earth we can use GNSS signals to navigate in everything from smartphones to airplanes,” said Kevin Coggins, deputy associate administrator for NASA’s SCaN (Space Communications and Navigation) Program. “Now, LuGRE shows us that we can successfully acquire and track GNSS signals at the Moon. This is a very exciting discovery for lunar navigation, and we hope to leverage this capability for future missions.”  
      This is a very exciting discovery for lunar navigation, and we hope to leverage this capability for future missions.  
      Kevin Coggins
      Deputy Associate Administrator for NASA SCaN
      The road to the historic milestone began on March 2 when the Firefly Aerospace’s Blue Ghost lunar lander touched down on the Moon and delivered LuGRE, one of 10 NASA payloads intended to advance lunar science. Soon after landing, LuGRE payload operators at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, began conducting their first science operation on the lunar surface.
      Members from NASA and Italian Space Agency watching the Blue Ghost lunar lander touch down on the Moon. NASA With the receiver data flowing in, anticipation mounted. Could a Moon-based mission acquire and track signals from two GNSS constellations, GPS and Galileo, and use those signals for navigation on the lunar surface?   
      Then, at 2 a.m. EST on March 3, it was official: LuGRE acquired and tracked signals on the lunar surface for the first time ever and achieved a navigation fix — approximately 225,000 miles away from Earth.  
      Now that Blue Ghost is on the Moon, the mission will operate for 14 days providing NASA and the Italian Space Agency the opportunity to collect data in a near-continuous mode, leading to additional GNSS milestones. In addition to this record-setting achievement, LuGRE is the first Italian Space Agency developed hardware on the Moon, a milestone for the organization.  
      The LuGRE payload also broke GNSS records on its journey to the Moon. On Jan. 21, LuGRE surpassed the highest altitude GNSS signal acquisition ever recorded at 209,900 miles from Earth, a record formerly held by NASA’s Magnetospheric Multiscale Mission. Its altitude record continued to climb as LuGRE reached lunar orbit on Feb. 20 — 243,000 miles from Earth. This means that missions in cislunar space, the area of space between Earth and the Moon, could also rely on GNSS signals for navigation fixes.  
      Firefly’s Blue Ghost lander captured its first sunrise on the Moon, marking the beginning of the lunar day and the start of surface operations in its new home. Firefly Aerospace Traditionally, NASA engineers track spacecraft by using a combination of measurements, including onboard sensors and signals from Earth-based tracking stations. The LuGRE payload demonstrates that using GNSS signals for navigation can reduce reliance on human operators because these signals can be picked up and used autonomously by the spacecraft, even as far away as the Moon. 
      The LuGRE payload is a collaborative effort between NASA’s Goddard Space Flight Center in Greenbelt, Maryland and the Italian Space Agency. Funding and oversight for the LuGRE payload comes from NASA’s SCaN Program office. It was chosen by NASA as one of 10 funded research and technology demonstrations for delivery to the lunar surface by Firefly Aerospace Inc., a flight under the agency’s Commercial Lunar Payload Services initiative.
      Learn more about LuGRE: https://go.nasa.gov/41qwwQN
      The joint NASA and Italian Space Agency LuGRE team at NASA’s Goddard Space Flight Center NASA About the Author
      Katherine Schauer
      Katherine Schauer is a writer for the Space Communications and Navigation (SCaN) program office and covers emerging technologies, commercialization efforts, exploration activities, and more.
      Share
      Details
      Last Updated Mar 04, 2025 EditorGoddard Digital TeamContactKatherine Schauerkatherine.s.schauer@nasa.govLocationNASA Goddard Space Flight Center Related Terms
      General Artemis Commercial Lunar Payload Services (CLPS) Communicating and Navigating with Missions Space Communications & Navigation Program Explore More
      5 min read NASA and Italian Space Agency Test Future Lunar Navigation Technology
      Article 2 months ago 3 min read NASA Delivers Hardware for Commercial Lunar Payload Mission
      Article 2 years ago 5 min read NASA Moon Mission Set to Break Record in Navigation Signal Test
      Article 3 years ago View the full article
  • Check out these Videos

×
×
  • Create New...