Jump to content

Recommended Posts

Posted
Australian researchers have discovered a strange spinning object in the Milky Way they say is unlike anything astronomers have ever seen. 

The object, first spotted by a university student working on his undergraduate thesis, releases a huge burst of radio energy three times every hour. 

AVvXsEjRZVEmuJKf9LHr1j0QZQLdiTUZZkrzW2N1wnB5RAmMwGEbOAqAjZwlKqW4vLZheRrfTA4Z9P2dghTRhes9Cx-tOQo6CqptMAwEIgeCHs0ZCUMHZa-nQPJfS8g4PpX0adbQ0ISuXfwhWdWaVudBoQplPkwqHHNYxg7r35I1EZYkk1F0v5BhDRneZ3kTwQ=w640-h360

According to phys.org the pulse comes "every 18.18 minutes, like clockwork," said astrophysicist Natasha Hurley-Walker, who led the investigation after the student's discovery, using a telescope in the Western Australian outback known as the Murchison Widefield Array. 

While there are other objects in the universe that switch on and off, such as pulsars, Hurley-Walker said 18.18 minutes is a frequency that has never been observed before. 

If you do all of the mathematics, you find that they shouldn't have enough power to produce these kind of radio waves every 20 minutes, it just shouldn't be possible the astrophysicist said. 

The object may be something researchers have theorized could exist but have never seen called an "ultra-long period magnetar". It could also be a white dwarf, a remnant of a collapsed star, but that's quite unusual as well. 

On the question of whether the powerful, consistent radio signal from space could have been sent by some other life form, Hurley-Walker conceded that this is not an artificial signal. 

But it is remarkable that the pulse comes every 18.18 minutes like clockwork!

It seems that this object is in relation with time and space, related to the number 9 which is a hidden code that reveals the highest truth of all and is encoded into the construction of our universe. 

Pulse mystery object comes every 18.18 minutes:
Now look
Pulse 18.18 minutes: 1+8-1+8 = 9+9=18=1+8=9 
Pulse 36.36 minutes: 3+6-3+6 = 9+9=18=1+8=9 
Pulse 54.54 minutes: 5+4-5+4 = 9+9=18=1+8=9 

And did you know that the; 
Moon diameter is 2160 miles: 2+1+6+0=9 
Earth diameter is 7920 miles: 7+9+2+0=18 =1+8=9 
Sun diameter is 864 000 miles: 8+6+4=18=1+8=9 
Speed of light is 186,624 miles per second:1+8+6+6+2+4=27 =2+7=9 
and about time;
1440 minutes a day:1+4+4+0=9 
86400 seconds a day: 8+6+4+0+0=18=1+8+0+0=9 
10080 minutes in a week:1+0+0+8+0=9 
525600 minutes in a year:5+2+6+0+0=18=1+8=9 

So, if the number 9 is in relation with space and time then is it a coincidence that this mysterious object emits a radio signal every 18.18 minutes, no it seems to be well calculated by intelligent design possible performed by an unknown higher power of the distant past. 

Read more about the hidden universal code 9 at: 



View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      X-ray: NASA/CXC/Univ. of Hong Kong/S. Zhang et al.; Radio: ATNF/CSIRO/ATCA; H-alpha: UK STFC/Royal Observatory Edinburgh; Image Processing: NASA/CXC/SAO/N. Wolk In 2009, NASA’s Chandra X-ray Observatory released a captivating image: a pulsar and its surrounding nebula that is shaped like a hand.
      Since then, astronomers have used Chandra and other telescopes to continue to observe this object. Now, new radio data from the Australia Telescope Compact Array (ATCA), has been combined with Chandra’s X-ray data to provide a fresh view of this exploded star and its environment, to help understand its peculiar properties and shape.
      At the center of this new image lies the pulsar B1509-58, a rapidly spinning neutron star that is only about 12 miles in diameter. This tiny object is responsible for producing an intricate nebula (called MSH 15-52) that spans over 150 light-years, or about 900 trillion miles. The nebula, which is produced by energetic particles, resembles a human hand with a palm and extended fingers pointing to the upper right in X-rays.
      Labeled Version of the ImageX-ray: NASA/CXC/Univ. of Hong Kong/S. Zhang et al.; Radio: ATNF/CSIRO/ATCA; H-alpha: UK STFC/Royal Observatory Edinburgh; Image Processing: NASA/CXC/SAO/N. Wolk The collapse of a massive star created the pulsar when much of the star crashed inward once it burned through its sustainable nuclear fuel. An ensuing explosion sent the star’s outer layers outward into space as a supernova.
      The pulsar spins around almost seven times every second and has a strong magnetic field, about 15 trillion times stronger than the Earth’s. The rapid rotation and strong magnetic field make B1509-58 one of the most powerful electromagnetic generators in the Galaxy, enabling it to drive an energetic wind of electrons and other particles away from the pulsar, creating the nebula.
      In this new composite image, the ATCA radio data (represented in red) has been combined with X-rays from Chandra (shown in blue, orange and yellow), along with an optical image of hydrogen gas (gold). The areas of overlap between the X-ray and radio data in MSH 15-52 show as purple. The optical image shows stars in the field of view along with parts of the supernova’s debris, the supernova remnant RCW 89. A labeled version of the figure shows the main features of the image.
      Radio data from ATCA now reveals complex filaments that are aligned with the directions of the nebula’s magnetic field, shown by the short, straight, white lines in a supplementary image. These filaments could result from the collision of the pulsar’s particle wind with the supernova’s debris.
      Complex Filaments Aligned with the Directions of the Nebula’s Magnetic FieldX-ray: NASA/CXC/Univ. of Hong Kong/S. Zhang et al.; Radio: ATNF/CSIRO/ATCA; H-alpha: UK STFC/Royal Observatory Edinburgh; Image Processing: NASA/CXC/SAO/N. Wolk By comparing the radio and X-ray data, researchers identified key differences between the sources of the two types of light. In particular, some prominent X-ray features, including the jet towards the bottom of the image and the inner parts of the three “fingers” towards the top, are not detected in radio waves. This suggests that highly energetic particles are leaking out from a shock wave — similar to a supersonic plane’s sonic boom — near the pulsar and moving along magnetic field lines to create the fingers.
      The radio data also shows that RCW 89’s structure is different from typical young supernova remnants. Much of the radio emission is patchy and closely matches clumps of X-ray and optical emission. It also extends well beyond the X-ray emission. All of these characteristics support the idea that RCW 89 is colliding with a dense cloud of nearby hydrogen gas.
      However, the researchers do not fully understand all that the data is showing them. One area that is perplexing is the sharp boundary of X-ray emission in the upper right of the image that seems to be the blast wave from the supernova — see the labeled feature. Supernova blast waves are usually bright in radio waves for young supernova remnants like RCW 89, so it is surprising to researchers that there is no radio signal at the X-ray boundary.
      MSH 15–52 and RCW 89 show many unique features not found in other young sources. There are, however, still many open questions regarding the formation and evolution of these structures. Further work is needed to provide better understanding of the complex interplay between the pulsar wind and the supernova debris.
      A paper describing this work, led by Shumeng Zhang of the University of Hong Kong, with co-authors Stephen C.Y. Ng of the University of Hong Kong and Niccolo’ Bucciantini of the Italian National Institute for Astrophysics, has been published in The Astrophysical Journal and is available at https://iopscience.iop.org/article/10.3847/1538-4357/adf333.
      NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features a composite image of a nebula and pulsar that strongly resembles a cosmic hand reaching for a neon red cloud.
      The neon red cloud sits near the top of the image, just to our right of center. Breaks in the cloud reveal interwoven strands of gold resembling spiderwebs, or a latticework substructure. This cloud is the remains of the supernova that formed the pulsar at the heart of the image. The pulsar, a rapidly spinning neutron star only 12 miles in diameter, is far too small to be seen in this image, which represents a region of space over 150 light-years across.
      The bottom half of the image is dominated by a massive blue hand reaching up toward the pulsar and supernova cloud. This is an intricate nebula called MSH 15-52, an energetic wind of electrons and other particles driven away from the pulsar. The resemblance to a hand is undeniable. Inside the nebula, streaks and swirls of blue range from pale to navy, evoking a medical X-ray, or the yearning hand of a giant, cosmic ghost.
      The hand and nebula are set against the blackness of space, surrounded by scores of gleaming golden specks. At our lower left, a golden hydrogen gas cloud extends beyond the edges of the image. In this composite, gold represents optical data; red represents ATCA radio data; and blue, orange, and yellow represent X-ray data from Chandra. Where the blue hand of the nebula overlaps with the radio data in red, the fingers appear hazy and purple.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Corinne Beckinger
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      corinne.m.beckinger@nasa.gov
      Share
      Details
      Last Updated Aug 20, 2025 EditorLee MohonContactCorinne M. Beckingercorinne.m.beckinger@nasa.gov Related Terms
      Astrophysics Chandra X-Ray Observatory Marshall Astrophysics Marshall Space Flight Center Nebulae Pulsars The Universe Explore More
      5 min read NASA, Army National Guard Partner on Flight Training for Moon Landing
      Article 2 days ago 4 min read NASA Challenge Winners Cook Up New Industry Developments
      Article 2 days ago 3 min read NASA Seeks Proposals for 2026 Human Exploration Rover Challenge 
      Article 5 days ago View the full article
    • By Amazing Space
      Can the Sun Really Disappear for 6 Minutes Today?
    • By NASA
      As the Sun approaches the most active part of its eleven-year magnetic cycle this summer, NASA volunteers have been watching it closely. Now they’ve spotted a new trend in solar behavior that will have you reaching for your suntan lotion. It’s all about something called a “Type II” solar radio burst:
      “Type II solar radio bursts are not commonly detected in the frequency range between 15 to 30 megahertz,” said Prof. Chuck Higgins, Co-founder of Radio JOVE. “Recently, we’re seeing many of them in that range.”
      Let’s unpack that. Our Sun often sprays powerful blasts of radio waves into space. Heliophysicists classify these radio bursts into five different types depending on how the frequency of the radio waves drifts over time. “Type II” solar radio bursts seem to come from solar flares and enormous squirts of hot plasma called coronal mass ejections.
      Now, Thomas Freeman, an undergraduate student at Middle Tennessee State University, and other volunteers working on NASA’s Radio JOVE project have observed something interesting about these Type II bursts: they are now showing up at lower frequencies—somewhere in between FM and AM radio. 
      What does it mean? It means our star is full of surprises! These Radio JOVE observations of the Sun’s radio emissions during solar maximum can be used to extend our knowledge of solar emissions to lower frequencies and, therefore, to distances farther from the Sun. 
      Radio JOVE is a NASA partner citizen science project in which participants assemble and operate radio astronomy telescopes to gather and contribute data to support scientific studies.  Radio JOVE collaborated with SunRISE Ground Radio Lab,  organized teams of high school students to observe the Sun, and recently published a paper on these Type II solar radio bursts. Learn more and get involved!  
      A Type II solar radio burst on April 23rd, 2024, seen as the gently sloping yellow band drifting from 17:49 to 18:02 UTC in the 15-30 MHz radio frequency-time spectrogram. Credit: Tom Ashcraft, Lamy, NM Share








      Details
      Last Updated Jul 23, 2025 Related Terms
      Citizen Science Heliophysics Explore More
      2 min read Bring NASA Science into Your Library!


      Article


      2 days ago
      4 min read NASA to Launch SNIFS, Sun’s Next Trailblazing Spectator
      July will see the launch of the groundbreaking Solar EruptioN Integral Field Spectrograph mission, or…


      Article


      6 days ago
      6 min read NASA’s TRACERS Studies Explosive Process in Earth’s Magnetic Shield


      Article


      7 days ago
      View the full article
    • By USH
      Since November 2024, strange blinking lights have been reported worldwide, an unexplained phenomenon that’s left many puzzled. MrMBB333 believes he may have found a connection. 

      Also known as electrical pollution, dirty electricity refers to high-frequency voltage spikes that ride along standard power lines. These rogue signals, forms of electromagnetic interference (EMI), can spread through our infrastructure, causing devices to glitch or behave unpredictably. 
      If this interference is appearing globally, the source might be something massive, possibly deep within Earth’s core. Rogue frequencies from the core could travel up and interact with power grids, solar systems, and transmission lines, triggering widespread anomalies. 
      Supporting this idea is a discovery from NASA’s ANITA project in Antarctica. While searching for cosmic neutrinos, scientists instead detected impossible radio signals rising from deep within Earth, signals that defy current physics.  
      According to current science, these waves should have been absorbed by the Earth’s crust long before reaching the detectors. But they weren’t. 
      When researchers checked their findings against other experiments, nothing lined up. This means they didn’t detect neutrinos, but something entirely unknown. Could this be a new kind of particle? A glitch in reality? Or something even stranger? 
      Although it is not known whether the strange radio signals detected deep beneath the Antarctic ice are related to the rogue signals believed to originate from Earth's core, MrMBB333 suggests there could be a connection. He proposes that similar forms of electromagnetic interference (EMI) might be disrupting global electronics and even contributing to the mysterious blinking light phenomenon. 
      Another possible factor at play is that the magnetic field is weakening as well as Solar Cycle 25 — the current 11-year cycle of solar activity marked by the Sun’s magnetic field reversal and increasing sunspot activity. This cycle began in December 2019 and is expected to reach its peak in 2025. 
      Therefore, could this solar phenomenon be interfering with the rogue electromagnetic signals from the Earth’s core are behind the strange blinking lights observed around the world? 
      If that’s the case, although I don’t recall the blinking light phenomenon ever appearing this intensely before, then the strange lights may begin to fade as Solar Cycle 25 winds down. Still, that doesn’t explain the origin of the mysterious radio signals rising from deep beneath Antarctica’s ice.
        View the full article
    • By NASA
      5 min read
      NASA Launching Rockets Into Radio-Disrupting Clouds
      NASA is launching rockets from a remote Pacific island to study mysterious, high-altitude cloud-like structures that can disrupt critical communication systems. The mission, called Sporadic-E ElectroDynamics, or SEED, opens its three-week launch window from Kwajalein Atoll in the Marshall Islands on Friday, June 13.
      The atmospheric features SEED is studying are known as Sporadic-E layers, and they create a host of problems for radio communications. When they are present, air traffic controllers and marine radio users may pick up signals from unusually distant regions, mistaking them for nearby sources. Military operators using radar to see beyond the horizon may detect false targets — nicknamed “ghosts” — or receive garbled signals that are tricky to decipher. Sporadic-E layers are constantly forming, moving, and dissipating, so these disruptions can be difficult to anticipate.
      An animated illustration depicts Sporadic-E layers forming in the lower portions of the ionosphere, causing radio signals to reflect back to Earth before reaching higher layers of the ionosphere. NASA’s Goddard Space Flight Center/Conceptual Image Lab Sporadic-E layers form in the ionosphere, a layer of Earth’s atmosphere that stretches from about 40 to 600 miles (60 to 1,000 kilometers) above sea level. Home to the International Space Station and most Earth-orbiting satellites, the ionosphere is also where we see the greatest impacts of space weather. Primarily driven by the Sun, space weather causes myriad problems for our communications with satellites and between ground systems. A better understanding of the ionosphere is key to keeping critical infrastructure running smoothly.
      The ionosphere is named for the charged particles, or ions, that reside there. Some of these ions come from meteors, which burn up in the atmosphere and leave traces of ionized iron, magnesium, calcium, sodium, and potassium suspended in the sky. These “heavy metals” are more massive than the ionosphere’s typical residents and tend to sink to lower altitudes, below 90 miles (140 kilometers). Occasionally, they clump together to create dense clusters known as Sporadic-E layers.
      The Perseids meteor shower peaks in mid-August. Meteors like these can deposit metals into Earth’s ionosphere that can help create cloud-like structures called Sporadic-E layers. NASA/Preston Dyches “These Sporadic-E layers are not visible to naked eye, and can only be seen by radars. In the radar plots, some layers appear like patchy and puffy clouds, while others spread out, similar to an overcast sky, which we call blanketing Sporadic-E layer” said Aroh Barjatya, the SEED mission’s principal investigator and a professor of engineering physics at Embry-Riddle Aeronautical University in Daytona Beach, Florida. The SEED team includes scientists from Embry-Riddle, Boston College in Massachusetts, and Clemson University in South Carolina.
      “There’s a lot of interest in predicting these layers and understanding their dynamics because of how they interfere with communications,” Barjatya said.
      A Mystery at the Equator
      Scientists can explain Sporadic-E layers when they form at midlatitudes but not when they appear close to Earth’s equator — such as near Kwajalein Atoll, where the SEED mission will launch.
      In the Northern and Southern Hemispheres, Sporadic-E layers can be thought of as particle traffic jams.
      Think of ions in the atmosphere as miniature cars traveling single file in lanes defined by Earth’s magnetic field lines. These lanes connect Earth end to end — emerging near the South Pole, bowing around the equator, and plunging back into the North Pole.
      A conceptual animation shows Earth’s magnetic field. The blue lines radiating from Earth represent the magnetic field lines that charged particles travel along. NASA’s Goddard Space Flight Center/Conceptual Image Lab At Earth’s midlatitudes, the field lines angle toward the ground, descending through atmospheric layers with varying wind speeds and directions. As the ions pass through these layers, they experience wind shear — turbulent gusts that cause their orderly line to clump together. These particle pileups form Sporadic-E layers.
      But near the magnetic equator, this explanation doesn’t work. There, Earth’s magnetic field lines run parallel to the surface and do not intersect atmospheric layers with differing winds, so Sporadic-E layers shouldn’t form. Yet, they do — though less frequently.
      “We’re launching from the closest place NASA can to the magnetic equator,” Barjatya said, “to study the physics that existing theory doesn’t fully explain.”
      Taking to the Skies
      To investigate, Barjatya developed SEED to study low-latitude Sporadic-E layers from the inside. The mission relies on sounding rockets — uncrewed suborbital spacecraft carrying scientific instruments. Their flights last only a few minutes but can be launched precisely at fleeting targets.
      Beginning the night of June 13, Barjatya and his team will monitor ALTAIR (ARPA Long-Range Tracking and Instrumentation Radar), a high-powered, ground-based radar system at the launch site, for signs of developing Sporadic-E layers. When conditions are right, Barjatya will give the launch command. A few minutes later, the rocket will be in flight.
      The SEED science team and mission management team in front of the ARPA Long-Range Tracking and Instrumentation Radar (ALTAIR). The SEED team will use ALTAIR to monitor the ionosphere for signs of Sporadic-E layers and time the launch. U.S. Army Space and Missile Defense Command On ascent, the rocket will release colorful vapor tracers. Ground-based cameras will track the tracers to measure wind patterns in three dimensions. Once inside the Sporadic-E layer, the rocket will deploy four subpayloads — miniature detectors that will measure particle density and magnetic field strength at multiple points. The data will be transmitted back to the ground as the rocket descends.
      On another night during the launch window, the team will launch a second, nearly identical rocket to collect additional data under potentially different conditions.
      Barjatya and his team will use the data to improve computer models of the ionosphere, aiming to explain how Sporadic-E layers form so close to the equator.
      “Sporadic-E layers are part of a much larger, more complicated physical system that is home to space-based assets we rely on every day,” Barjatya said. “This launch gets us closer to understanding another key piece of Earth’s interface to space.”
      By Miles Hatfield
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Jun 12, 2025 Related Terms
      Heliophysics Goddard Space Flight Center Heliophysics Division Ionosphere Missions NASA Centers & Facilities NASA Directorates Science & Research Science Mission Directorate Sounding Rockets Sounding Rockets Program The Solar System The Sun Uncategorized Wallops Flight Facility Weather and Atmospheric Dynamics Explore More
      9 min read The Earth Observer Editor’s Corner: April–June 2025


      Article


      22 hours ago
      5 min read NASA’s Webb ‘UNCOVERs’ Galaxy Population Driving Cosmic Renovation


      Article


      22 hours ago
      6 min read Frigid Exoplanet in Strange Orbit Imaged by NASA’s Webb


      Article


      2 days ago
      Keep Exploring Discover Related Topics
      Sounding Rockets



      Ionosphere, Thermosphere & Mesosphere



      Space Weather


      Solar flares, coronal mass ejections, solar particle events, and the solar wind form the recipe space weather that affects life…


      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...