Members Can Post Anonymously On This Site
Black cube-shaped object captured in the clouds over Texas
-
Similar Topics
-
By USH
Some time ago, while visiting the Grand Canyon in Arizona, a photographer captured several short video clips of the landscape. In one of those clips, an unusual anomaly was discovered.
The original footage is only 1.9 seconds long, but within that moment, something remarkable was caught on camera. An unidentified aerial phenomenon (UAP) flashed across the frame, visible for less than a second, only noticeable when the video was paused and analyzed frame by frame.
The object was moving at an astonishing speed, covering an estimated two to three miles in under a second, far beyond the capabilities of any conventional aircraft, drone, or helicopter.
This isn’t the first time such anomalous flying objects have been observed. Their characteristics defy comparison with known aerial technology.
Some skeptics have proposed that the object might have been a rock thrown into the canyon from behind the camera. However, that explanation seems unlikely. Most people can only throw objects at speeds of 10 to 20 meters per second (approximately 22 to 45 mph). The velocity of this object far exceeded that range, and its near-invisibility in the unedited video suggests it was moving much faster.
View the full article
-
By NASA
5 min read
NASA Launching Rockets Into Radio-Disrupting Clouds
NASA is launching rockets from a remote Pacific island to study mysterious, high-altitude cloud-like structures that can disrupt critical communication systems. The mission, called Sporadic-E ElectroDynamics, or SEED, opens its three-week launch window from Kwajalein Atoll in the Marshall Islands on Friday, June 13.
The atmospheric features SEED is studying are known as Sporadic-E layers, and they create a host of problems for radio communications. When they are present, air traffic controllers and marine radio users may pick up signals from unusually distant regions, mistaking them for nearby sources. Military operators using radar to see beyond the horizon may detect false targets — nicknamed “ghosts” — or receive garbled signals that are tricky to decipher. Sporadic-E layers are constantly forming, moving, and dissipating, so these disruptions can be difficult to anticipate.
An animated illustration depicts Sporadic-E layers forming in the lower portions of the ionosphere, causing radio signals to reflect back to Earth before reaching higher layers of the ionosphere. NASA’s Goddard Space Flight Center/Conceptual Image Lab Sporadic-E layers form in the ionosphere, a layer of Earth’s atmosphere that stretches from about 40 to 600 miles (60 to 1,000 kilometers) above sea level. Home to the International Space Station and most Earth-orbiting satellites, the ionosphere is also where we see the greatest impacts of space weather. Primarily driven by the Sun, space weather causes myriad problems for our communications with satellites and between ground systems. A better understanding of the ionosphere is key to keeping critical infrastructure running smoothly.
The ionosphere is named for the charged particles, or ions, that reside there. Some of these ions come from meteors, which burn up in the atmosphere and leave traces of ionized iron, magnesium, calcium, sodium, and potassium suspended in the sky. These “heavy metals” are more massive than the ionosphere’s typical residents and tend to sink to lower altitudes, below 90 miles (140 kilometers). Occasionally, they clump together to create dense clusters known as Sporadic-E layers.
The Perseids meteor shower peaks in mid-August. Meteors like these can deposit metals into Earth’s ionosphere that can help create cloud-like structures called Sporadic-E layers. NASA/Preston Dyches “These Sporadic-E layers are not visible to naked eye, and can only be seen by radars. In the radar plots, some layers appear like patchy and puffy clouds, while others spread out, similar to an overcast sky, which we call blanketing Sporadic-E layer” said Aroh Barjatya, the SEED mission’s principal investigator and a professor of engineering physics at Embry-Riddle Aeronautical University in Daytona Beach, Florida. The SEED team includes scientists from Embry-Riddle, Boston College in Massachusetts, and Clemson University in South Carolina.
“There’s a lot of interest in predicting these layers and understanding their dynamics because of how they interfere with communications,” Barjatya said.
A Mystery at the Equator
Scientists can explain Sporadic-E layers when they form at midlatitudes but not when they appear close to Earth’s equator — such as near Kwajalein Atoll, where the SEED mission will launch.
In the Northern and Southern Hemispheres, Sporadic-E layers can be thought of as particle traffic jams.
Think of ions in the atmosphere as miniature cars traveling single file in lanes defined by Earth’s magnetic field lines. These lanes connect Earth end to end — emerging near the South Pole, bowing around the equator, and plunging back into the North Pole.
A conceptual animation shows Earth’s magnetic field. The blue lines radiating from Earth represent the magnetic field lines that charged particles travel along. NASA’s Goddard Space Flight Center/Conceptual Image Lab At Earth’s midlatitudes, the field lines angle toward the ground, descending through atmospheric layers with varying wind speeds and directions. As the ions pass through these layers, they experience wind shear — turbulent gusts that cause their orderly line to clump together. These particle pileups form Sporadic-E layers.
But near the magnetic equator, this explanation doesn’t work. There, Earth’s magnetic field lines run parallel to the surface and do not intersect atmospheric layers with differing winds, so Sporadic-E layers shouldn’t form. Yet, they do — though less frequently.
“We’re launching from the closest place NASA can to the magnetic equator,” Barjatya said, “to study the physics that existing theory doesn’t fully explain.”
Taking to the Skies
To investigate, Barjatya developed SEED to study low-latitude Sporadic-E layers from the inside. The mission relies on sounding rockets — uncrewed suborbital spacecraft carrying scientific instruments. Their flights last only a few minutes but can be launched precisely at fleeting targets.
Beginning the night of June 13, Barjatya and his team will monitor ALTAIR (ARPA Long-Range Tracking and Instrumentation Radar), a high-powered, ground-based radar system at the launch site, for signs of developing Sporadic-E layers. When conditions are right, Barjatya will give the launch command. A few minutes later, the rocket will be in flight.
The SEED science team and mission management team in front of the ARPA Long-Range Tracking and Instrumentation Radar (ALTAIR). The SEED team will use ALTAIR to monitor the ionosphere for signs of Sporadic-E layers and time the launch. U.S. Army Space and Missile Defense Command On ascent, the rocket will release colorful vapor tracers. Ground-based cameras will track the tracers to measure wind patterns in three dimensions. Once inside the Sporadic-E layer, the rocket will deploy four subpayloads — miniature detectors that will measure particle density and magnetic field strength at multiple points. The data will be transmitted back to the ground as the rocket descends.
On another night during the launch window, the team will launch a second, nearly identical rocket to collect additional data under potentially different conditions.
Barjatya and his team will use the data to improve computer models of the ionosphere, aiming to explain how Sporadic-E layers form so close to the equator.
“Sporadic-E layers are part of a much larger, more complicated physical system that is home to space-based assets we rely on every day,” Barjatya said. “This launch gets us closer to understanding another key piece of Earth’s interface to space.”
By Miles Hatfield
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Jun 12, 2025 Related Terms
Heliophysics Goddard Space Flight Center Heliophysics Division Ionosphere Missions NASA Centers & Facilities NASA Directorates Science & Research Science Mission Directorate Sounding Rockets Sounding Rockets Program The Solar System The Sun Uncategorized Wallops Flight Facility Weather and Atmospheric Dynamics Explore More
9 min read The Earth Observer Editor’s Corner: April–June 2025
Article
22 hours ago
5 min read NASA’s Webb ‘UNCOVERs’ Galaxy Population Driving Cosmic Renovation
Article
22 hours ago
6 min read Frigid Exoplanet in Strange Orbit Imaged by NASA’s Webb
Article
2 days ago
Keep Exploring Discover Related Topics
Sounding Rockets
Ionosphere, Thermosphere & Mesosphere
Space Weather
Solar flares, coronal mass ejections, solar particle events, and the solar wind form the recipe space weather that affects life…
Solar System
View the full article
-
By NASA
A black hole has blasted out a surprisingly powerful jet in the distant universe, according to a study from NASA’s Chandra X-ray Observatory.X-ray: NASA/CXC/CfA/J. Maithil et al.; Illustration: NASA/CXC/SAO/M. Weiss; Image Processing: NASA/CXC/SAO/N. Wolk A black hole has blasted out a surprisingly powerful jet in the distant universe, according to a new study from NASA’s Chandra X-ray Observatory and discussed in our latest press release. This jet exists early enough in the cosmos that it is being illuminated by the leftover glow from the big bang itself.
Astronomers used Chandra and the Karl G. Jansky Very Large Array (VLA) to study this black hole and its jet at a period they call “cosmic noon,” which occurred about three billion years after the universe began. During this time most galaxies and supermassive black holes were growing faster than at any other time during the history of the universe.
The main graphic is an artist’s illustration showing material in a disk that is falling towards a supermassive black hole. A jet is blasting away from the black hole towards the upper right, as Chandra detected in the new study. The black hole is located 11.6 billion light-years from Earth when the cosmic microwave background (CMB), the leftover glow from the big bang, was much denser than it is now. As the electrons in the jets fly away from the black hole, they move through the sea of CMB radiation and collide with microwave photons. These collisions boost the energy of the photons up into the X-ray band (purple and white), allowing them to be detected by Chandra even at this great distance, which is shown in the inset.
Researchers, in fact, identified and then confirmed the existence of two different black holes with jets over 300,000 light-years long. The two black holes are 11.6 billion and 11.7 billion light-years away from Earth, respectively. Particles in one jet are moving at between 95% and 99% of the speed of light (called J1405+0415) and in the other at between 92% and 98% of the speed of light (J1610+1811). The jet from J1610+1811 is remarkably powerful, carrying roughly half as much energy as the intense light from hot gas orbiting the black hole.
The team was able to detect these jets despite their great distances and small separation from the bright, growing supermassive black holes — known as “quasars” — because of Chandra’s sharp X-ray vision, and because the CMB was much denser then than it is now, enhancing the energy boost described above.
When quasar jets approach the speed of light, Einstein’s theory of special relativity creates a dramatic brightening effect. Jets aimed toward Earth appear much brighter than those pointed away. The same brightness astronomers observe can come from vastly different combinations of speed and viewing angle. A jet racing at near-light speed but angled away from us can appear just as bright as a slower jet pointed directly at Earth.
The researchers developed a novel statistical method that finally cracked this challenge of separating effects of speed and of viewing angle. Their approach recognizes a fundamental bias: astronomers are more likely to discover jets pointed toward Earth simply because relativistic effects make them appear brightest. They incorporated this bias using a modified probability distribution, which accounts for how jets oriented at different angles are detected in surveys.
Their method works by first using the physics of how jet particles scatter the CMB to determine the relationship between jet speed and viewing angle. Then, instead of assuming all angles are equally likely, they apply the relativistic selection effect: jets beamed toward us (smaller angles) are overrepresented in our catalogs. By running ten thousand simulations that match this biased distribution to their physical model, they could finally determine the most probable viewing angles: about 9 degrees for J1405+0415 and 11 degrees for J1610+1811.
These results were presented by Jaya Maithil (Center for Astrophysics | Harvard & Smithsonian) at the 246th meeting of the American Astronomical Society in Anchorage, AK, and are also being published in The Astrophysical Journal. A preprint is available here. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
Read more from NASA’s Chandra X-ray Observatory Learn more about the Chandra X-ray Observatory and its mission here:
https://www.nasa.gov/chandra
https://chandra.si.edu
Visual Description
This release is supported by an artist’s illustration of a jet blasting away from a supermassive black hole.
The black hole sits near the center of the illustration. It resembles a black marble with a fine yellow outline. Surrounding the black hole is a swirling disk, resembling a dinner plate tilted to face our upper right. This disk comprises concentric rings of fiery swirls, dark orange near the outer edge, and bright yellow near the core.
Shooting out of the black hole are two streaky beams of silver and pale violet. One bright beam shoots up toward our upper right, and a second somewhat dimmer beam shoots in the opposite direction, down toward our lower left. These beams are encircled by long, fine, corkscrewing lines that resemble stretched springs.
This black hole is located 11.6 billion light-years from Earth, much earlier in the history of the universe. Near this black hole, the leftover glow from the big bang, known as the cosmic microwave background or CMB, is much denser than it is now. As the electrons in the jets blast away from the black hole, they move through the sea of CMB radiation. The electrons boost the energies of the CMB light into the X-ray band, allowing the jets to be detected by Chandra, even at this great distance.
Inset at our upper righthand corner is an X-ray image depicting this interaction. Here, a bright white circle is ringed with a band of glowing purple energy. The jet is the faint purple line shooting off that ring, aimed toward our upper right, with a blob of purple energy at its tip.
News Media Contact
Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu
Lane Figueroa
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
lane.e.figueroa@nasa.gov
View the full article
-
By NASA
ESA/Hubble & NASA, C. Murray This NASA/ESA Hubble Space Telescope image features a sparkling cloudscape from one of the Milky Way’s galactic neighbors, a dwarf galaxy called the Large Magellanic Cloud. Located 160,000 light-years away in the constellations Dorado and Mensa, the Large Magellanic Cloud is the largest of the Milky Way’s many small satellite galaxies.
This view of dusty gas clouds in the Large Magellanic Cloud is possible thanks to Hubble’s cameras, such as the Wide Field Camera 3 (WFC3) that collected the observations for this image. WFC3 holds a variety of filters, and each lets through specific wavelengths, or colors, of light. This image combines observations made with five different filters, including some that capture ultraviolet and infrared light that the human eye cannot see.
The wispy gas clouds in this image resemble brightly colored cotton candy. When viewing such a vividly colored cosmic scene, it is natural to wonder whether the colors are ‘real’. After all, Hubble, with its 7.8-foot-wide (2.4 m) mirror and advanced scientific instruments, doesn’t bear resemblance to a typical camera! When image-processing specialists combine raw filtered data into a multi-colored image like this one, they assign a color to each filter. Visible-light observations typically correspond to the color that the filter allows through. Shorter wavelengths of light such as ultraviolet are usually assigned blue or purple, while longer wavelengths like infrared are typically red.
This color scheme closely represents reality while adding new information from the portions of the electromagnetic spectrum that humans cannot see. However, there are endless possible color combinations that can be employed to achieve an especially aesthetically pleasing or scientifically insightful image.
Learn how Hubble images are taken and processed.
Text credit: ESA/Hubble
Image credit: ESA/Hubble & NASA, C. Murray
View the full article
-
By NASA
5 Min Read 3 Black Holes Caught Eating Massive Stars in NASA Data
A disk of hot gas swirls around a black hole in this illustration. Some of the gas came from a star that was pulled apart by the black hole, forming the long stream of hot gas on the right, feeding into the disk. Credits:
NASA/JPL-Caltech Black holes are invisible to us unless they interact with something else. Some continuously eat gas and dust, and appear to glow brightly over time as matter falls in. But other black holes secretly lie in wait for years until a star comes close enough to snack on.
Scientists have recently identified three supermassive black holes at the centers of distant galaxies, each of which suddenly brightened when it destroyed a star and then stayed bright for several months. A new study using space and ground-based data from NASA, ESA (European Space Agency), and other institutions presents these rare occurrences as a new category of cosmic events called “extreme nuclear transients.”
Looking for more of these extreme nuclear transients could help unveil some of the most massive supermassive black holes in the universe that are usually quiet.
“These events are the only way we can have a spotlight that we can shine on otherwise inactive massive black holes,” said Jason Hinkle, graduate student at the University of Hawaii and lead author of a new study in the journal Science Advances describing this phenomenon.
The black holes in question seem to have eaten stars three to 10 times heavier than our Sun. Feasting on the stars resulted in some of the most energetic transient events ever recorded.
This illustration shows a glowing stream of material from a star as it is being devoured by a supermassive black hole. When a star passes within a certain distance of a black hole — close enough to be gravitationally disrupted — the stellar material gets stretched and compressed as it falls into the black hole. NASA/JPL-Caltech These events as unleash enormous amount of high-energy radiation on the central regions of their host galaxies. “That has implications for the environments in which these events are occurring,” Hinkle said. “If galaxies have these events, they’re important for the galaxies themselves.”
The stars’ destruction produces high-energy light that takes over 100 days to reach peak brightness, then more than 150 days to dim to half of its peak. The way the high-energy radiation affects the environment results in lower-energy emissions that telescopes can also detect.
One of these star-destroying events, nicknamed “Barbie” because of its catalog identifier ZTF20abrbeie, was discovered in 2020 by the Zwicky Transient Facility at Caltech’s Palomar Observatory in California, and documented in two 2023 studies. The other two black holes were detected by ESA’s Gaia mission in 2016 and 2018 and are studied in detail in the new paper.
NASA’s Neil Gehrels Swift Observatory was critical in confirming that these events must have been related to black holes, not stellar explosions or other phenomena. The way that the X-ray, ultraviolet, and optical light brightened and dimmed over time was like a fingerprint matching that of a black hole ripping a star apart.
Scientists also used data from NASA’s WISE spacecraft, which was operated from 2009 to 2011 and then was reactivated as NEOWISE and retired in 2024. Under the WISE mission the spacecraft mapped the sky at infrared wavelengths, finding many new distant objects and cosmic phenomena. In the new study, the spacecraft’s data helped researchers characterize dust in the environments of each black hole. Numerous ground-based observatories additionally contributed to this discovery, including the W. M. Keck Observatory telescopes through their NASA-funded archive and the NASA-supported Near-Earth Object surveys ATLAS, Pan-STARRS, and Catalina.
“What I think is so exciting about this work is that we’re pushing the upper bounds of what we understand to be the most energetic environments of the universe,” said Anna Payne, a staff scientist at the Space Telescope Science Institute and study co-author, who helped look for the chemical fingerprints of these events with the University of Hawaii 2.2-meter Telescope.
A Future Investigators in NASA Earth and Space Science and Technology (FINESST) grant from the agency helped enable Hinkle to search for these black hole events. “The FINESST grant gave Jason the freedom to track down and figure out what these events actually were,” said Ben Shappee, associate professor at the Institute for Astronomy at the University of Hawaii, a study coauthor and advisor to Hinkle.
Hinkle is set to follow up on these results as a postdoctoral fellow at the University of Illinois Urbana-Champaign through the NASA Hubble Fellowship Program. “One of the biggest questions in astronomy is how black holes grow throughout the universe,” Hinkle said.
The results complement recent observations from NASA’s James Webb Space Telescope showing how supermassive black holes feed and grow in the early universe. But since only 10% of early black holes are actively eating gas and dust, extreme nuclear transients — that is, catching a supermassive black hole in the act of eating a massive star — are a different way to find black holes in the early universe.
Events like these are so bright that they may be visible even in the distant, early universe. Swift showed that extreme nuclear transients emit most of their light in the ultraviolet. But as the universe expands, that light is stretched to longer wavelengths and shifts into the infrared — exactly the kind of light NASA’s upcoming Nancy Grace Roman Space Telescope was designed to detect.
With its powerful infrared sensitivity and wide field of view, Roman will be able to spot these rare explosions from more than 12 billion years ago, when the universe was just a tenth of its current age. Scheduled to launch by 2027, and potentially as early as fall 2026, Roman could uncover many more of these dramatic events and offer a new way to explore how stars, galaxies, and black holes formed and evolved over time.
“We can take these three objects as a blueprint to know what to look for in the future,” Payne said.
Explore More
5 min read NASA’s Webb Rounds Out Picture of Sombrero Galaxy’s Disk
Article
1 day ago
2 min read Hubble Filters a Barred Spiral
Article
1 day ago
5 min read Apocalypse When? Hubble Casts Doubt on Certainty of Galactic Collision
Article
2 days ago
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.