Members Can Post Anonymously On This Site
NASA Science Live: What’s Next for the James Webb Space Telescope?
-
Similar Topics
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA/Jacob Shaw A NASA system designed to measure temperature and strain on high-speed vehicles is set to make its first flights at hypersonic speeds – greater than Mach 5, or five times the speed of sound – when mounted to two research rockets launching this summer.
Technicians in the Environmental Laboratory at NASA’s Armstrong Flight Research Center in Edwards, California, used machines called shakers to perform vibration tests on the technology, known as a Fiber Optic Sensing System (FOSS), on March 26. The tests confirmed the FOSS could operate while withstanding the shaking forces of a rocket launch. Initial laboratory and flight tests in 2024 went well, leading to the recently tested system’s use on the U.S. Department of Defense coordinated research rockets to measure critical temperature safety data.
Hypersonic sensing systems are crucial for advancing hypersonics, a potentially game-changing field in aeronautics. Capitalizing on decades of research, NASA is working to address critical challenges in hypersonic engine technology through its Advanced Air Vehicles Program.
Using FOSS, NASA will gather data on the strain placed on vehicles during flight, as well as temperature information, which helps engineers understand the condition of a rocket or aircraft. The FOSS system collects data using a fiber about the thickness of a human hair that collects data along its length, replacing heavier and bulkier traditional wire harnesses and sensors.
Jonathan Lopez and Allen Parker confer on the hypersonic Fiber Optic Sensor System at NASA’s Armstrong Flight Research Center in Edwards, California, on February 13, 2025. The system measures strain and temperature, critical safety data for hypersonic vehicles that travel five time the speed of sound.NASA/Steve Freeman “There is no reliable technology with multiple sensors on a single fiber in the hypersonic environment,” said Patrick Chan, FOSS project manager at Armstrong. “The FOSS system is a paradigm shift for hypersonic research, because it can measure temperature and strain.”
For decades, NASA Armstrong worked to develop and improve the system, leading to hypersonic FOSS, which originated in 2020. Craig Stephens, the Hypersonic Technology Project associate project manager at NASA Armstrong, anticipated a need for systems and sensors to measure temperature and strain on hypersonic vehicles.
“I challenged the FOSS team to develop a durable data collection system that had reduced size, weight, and power requirements,” Stephens said. “If we obtain multiple readings from one FOSS fiber, that means we are reducing the number of wires in a vehicle, effectively saving weight and space.”
The research work has continually made the system smaller and lighter. While a space-rated FOSS used in 2022 to collect temperature data during a NASA mission in low Earth orbit was roughly the size of a toaster, the hypersonic FOSS unit is about the size of two sticks of butter.
Jonathan Lopez and Nathan Rick prepare the hypersonic Fiber Optic Sensing System for vibration tests in the Environmental Laboratory at NASA’s Armstrong Flight Research Center in Edwards, California. Testing on a machine called a shaker proved that the system could withstand the severe vibration it will endure in hypersonic flight, or travel at five times the speed of sound.NASA/Jim Ross Successful Partnerships
To help advance hypersonic FOSS to test flights, NASA Armstrong Technology Transfer Office lead Ben Tomlinson orchestrated a partnership. NASA, the U.S. Air Force Test Pilot School in Edwards, California, and the U.S. Air Force’s 586th Flight Test Squadron at Holloman Air Force Base in New Mexico, agreed to a six-flight series in 2024.
The test pilot school selected an experiment comparing FOSS and traditional sensors, looking at the data the different systems produced.
The hypersonic FOSS was integrated into a beam fixed onto one end of a pod. It had weight on the other end of the beam so that it could move as the aircraft maneuvered into position for the tests. The pod fit under a T-38 aircraft that collected strain data as the aircraft flew.
“The successful T-38 flights increased the FOSS technology readiness,” Tomlinson said. “However, a test at hypersonic speed will make FOSS more attractive for a United States business to commercialize.”
April Torres, from left, Cryss Punteney, and Karen Estes watch as data flows from the hypersonic Fiber Optic Sensing System at NASA’s Armstrong Flight Research Center in Edwards, California. Testing on a machine called a shaker proved that the system could withstand the severe vibration it will endure in hypersonic flight, or travel at five times the speed of sound.NASA/Jim Ross New Opportunities
After the experiment with the Air Force, NASA’s hypersonic technology team looked for other opportunities to advance the miniaturized version of the system. That interest led to the upcoming research rocket tests in coordination with the Department of Defense.
“We have high confidence in the system, and we look forward to flying it in hypersonic flight and at altitude,” Chan said.
A hypersonic Fiber Optic Sensing System, developed at NASA’s Armstrong Flight Research Center in Edwards, California, is ready for a test flight on a T-38 at the U.S. Air Force 586th Flight Test Squadron at Holloman Air Force Base in New Mexico. NASA Armstrong, the flight test squadron, and the U.S. Air Force Test Pilot School in Edwards, California, partnered for the test. From left are Earl Adams, Chathu Kuruppu, Colby Ferrigno, Allen Parker, Patrick Chan, Anthony Peralta, Ben Tomlinson, Jonathan Lopez, David Brown, Lt. Col. Sean Siddiqui, Capt. Nathaniel Raquet, Master Sgt. Charles Shepard, and Greg Talbot.U.S. Air Force/Devin Lopez Share
Details
Last Updated Jun 18, 2025 EditorDede DiniusContactJay Levinejay.levine-1@nasa.govLocationArmstrong Flight Research Center Related Terms
Armstrong Flight Research Center Advanced Air Vehicles Program Aeronautics Aeronautics Research Mission Directorate Hypersonic Technology Explore More
5 min read NASA F-15s Validate Tools for Quesst Mission
Article 1 week ago 2 min read From Garment Industry to NASA: Meet Systems Engineer Daniel Eng
Article 2 weeks ago 9 min read ARMD Research Solicitations (Updated June 6)
Article 2 weeks ago
Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Earth (ESD) Earth Explore Explore Earth Home Air Quality Climate Change Freshwater Life on Earth Severe Storms Snow and Ice The Global Ocean Science at Work Earth Science at Work Technology and Innovation Powering Business Multimedia Image Collections Videos Data For Researchers About Us 1 min read
From Space to Soil: How NASA Sees Forests
NASA uses satellite lidar technology to study Earth’s forests, key carbon sinks. The GEDI mission maps forest height and biomass from the International Space Station, while ICESat-2 fills polar data gaps. Together, they enable a first-of-its-kind global biomass map, guiding smarter forest conservation and carbon tracking.
Original Video and Assets
Share
Details
Last Updated Jun 17, 2025 Editor Earth Science Division Editorial Team Related Terms
Earth Greenhouse Gases Video Series Explore More
12 min read NASA’s Hurricane Science, Tech, Data Help American Communities
With hurricane season underway, NASA is gearing up to produce cutting-edge research to bolster the…
Article
5 days ago
1 min read Leaf Year: Seeing Plants in Hyperspectral Color
PACE now allows scientists to see three different pigments in vegetation, helping scientists pinpoint even…
Article
2 weeks ago
6 min read What NASA Is Learning from the Biggest Geomagnetic Storm in 20 Years
Article
1 month ago
Keep Exploring Discover More Topics From NASA
Earth
Your home. Our Mission. And the one planet that NASA studies more than any other.
Explore Earth Science
Earth Science in Action
NASA’s unique vantage point helps us inform solutions to enhance decision-making, improve livelihoods, and protect our planet.
Climate Change
NASA is a global leader in studying Earth’s changing climate.
View the full article
-
By NASA
Acting NASA Administrator Janet Petro and Anke Kaysser-Pyzalla, chair, Executive Board, DLR (German Aerospace Center, or Deutsches Zentrum für Luft- und Raumfahrt), signed an agreement June 16, 2025, to continue a partnership on space medicine research. With this agreement, DLR will provide new radiation sensors aboard the Orion spacecraft during NASA’s Artemis II mission. Scheduled for launch no later than April 2026, Artemis II will mark the first test flight with crew under Artemis.Credit: DLR While attending the Paris Air Show June 16, NASA acting Administrator Janet Petro signed an agreement with DLR (German Aerospace Center, or Deutsches Zentrum für Luft- und Raumfahrt) to continue a partnership in space medicine research. This renewed collaboration builds on previous radiation mitigation efforts for human spaceflight. As NASA advances the Trump-Vance Administration’s goals for exploration on the Moon and Mars, minimizing exposure to space radiation is one of the key areas the agency is working to protect crew on long duration missions.
With this agreement, DLR will leverage its human spaceflight expertise and provide new radiation sensors aboard the Orion spacecraft during NASA’s Artemis II mission, building on previous work in this area during the Artemis I mission. Scheduled for launch no later than April 2026, Artemis II will mark the first test flight with crew under Artemis.
“In keeping with the historic agreements NASA has made with international partners as a part of Artemis, I am pleased to sign a new NASA-DLR joint agreement today, to enable radiation research aboard Artemis II,” said acting NASA Administrator Janet Petro. “The German Aerospace Center has been a valuable partner in Artemis, having previously worked with NASA to test technology critical to our understanding of radiation on humans aboard an Orion spacecraft on Artemis I and providing a CubeSat as part of Artemis II. Following a productive meeting between President Trump and German Chancellor Merz earlier this month, I am excited to build upon our great partnership with Germany.”
During the Artemis II mission’s planned 10-day journey around the Moon and back, four of DLR’s newly developed M-42 extended (M-42 EXT) radiation detectors will be on board, contributing vital data to support astronaut safety. This next-generation device represents a new phase of research as NASA and DLR continue working together to safeguard human health in space.
Under the leadership of President Trump, America’s Artemis campaign has reignited NASA’s ambition, sparking international cooperation and cutting-edge innovation. The continued partnership with DLR and the deployment of their advanced M-42 EXT radiation detectors aboard Artemis II exemplifies how the Trump-Vance Administration is leading a Golden Era of Exploration and Innovation that puts American astronauts on the path to the Moon, Mars, and beyond.
“To develop effective protective measures against the impact of space radiation on the human body, comprehensive and coherent radiation measurements in open space are essential,” says Anke Pagels-Kerp, divisional board member for space at DLR. “At the end of 2022, Artemis I carried 12,000 passive and 16 active detectors inside the Helga and Zohar mannequins, which flew aboard the Orion spacecraft as part of DLR’s MARE project. These provided a valuable dataset – the first continuous radiation measurements ever recorded beyond low Earth orbit. We are now excited to take the next step together with NASA and send our upgraded radiation detectors around the Moon on the Artemis II mission.”
Through the Artemis campaign, the agency will establish a long-term presence on the Moon for scientific exploration with our commercial and international partners, learn how to live and work away from home, and prepare for future human exploration of Mars.
For more information about Artemis, visit:
https://www.nasa.gov/artemis
-end-
Bethany Stevens / Rachel Kraft
Headquarters
202-358-1600
bethany.c.stevens@nasa.gv / rachel.h.kraft@nasa.gov
Share
Details
Last Updated Jun 17, 2025 LocationNASA Headquarters Related Terms
Artemis Artemis 2 NASA Headquarters View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.