Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Expedition 72 Flight Engineers Takuya Onishi from JAXA (Japan Aerospace Exploration Agency) and NASA astronauts Anne McClain, Nichole Ayers, and Don Pettit pose while inside the vestibule between the International Space Station’s Unity module and the Cygnus space freighter.NASA NASA astronaut Nichole Ayers and JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi will answer prerecorded questions about science, technology, engineering, and mathematics from students in Mansfield, Texas, while aboard the International Space Station.
      The 20-minute space-to-Earth call will take place at 10:40 a.m. EDT on Monday, May 5, and can be watched on the NASA STEM YouTube Channel.
      Media interested in covering the event must RSVP no later than 5 p.m., Friday, May 2 by contacting Laura Jobe at laurajobe@misdmail.org or 817-299-6300.
      The event, hosted by Mansfield Independent School District, also will have students present from Brenda Norwood Elementary, Alma Martinez Intermediate, Charlene McKinzey Middle, Jerry Knight and Frontier STEM Academies in Mansfield. This opportunity will allow the students to relate what they have learned about space travel to personal experiences.
      For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos of astronauts aboard the space station at:
      https://www.nasa.gov/stemonstation
      -end-
      Gerelle Dodson
      Headquarters, Washington
      202-358-1600
      gerelle.q.dodson@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Apr 30, 2025 LocationNASA Headquarters Related Terms
      Humans in Space International Space Station (ISS) Johnson Space Center NASA Headquarters View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A researcher inspects the interior of a male American horseshoe crab at NASA’s Kennedy Space Center in Florida. Known scientifically as Limulus polyphemus, the American horseshoe crab is vital to researchers’ understanding of the overall health of NASA Kennedy’s ecosystem.NASA They’re known as “living fossils”.
      For over 450 million years, horseshoe crabs have been an ecologically vital part of our planet. They’re one of the few surviving species on Earth dating back to the dinosaurs.
      At NASA’s Kennedy Space Center in Florida, the American horseshoe crab (Limulus polyphemus) is one of more than 1,500 types of animals and plants you can find living on its over 144,000 acres, the majority of which is managed by the U.S. Fish and Wildlife Service and National Park Service. Sharing a boundary with the Merritt Island National Wildlife Refuge and Canaveral National Seashore, NASA Kennedy is one of the most biologically diverse places in the United States.
      The center’s land, water, and air species live alongside the symbols of America’s space program: the vital facilities and infrastructure that support the many launches at NASA Kennedy and Cape Canaveral Space Force Station as well as the rockets enabling humanity’s exploration of the cosmos.
      Researchers measure the shell of a male and female American horseshoe crab at NASA’s Kennedy Space Center in Florida. Known scientifically as Limulus polyphemus, the American horseshoe crab is vital to researchers’ understanding of the overall health of NASA Kennedy’s ecosystem. Preserving NASA Kennedy’s wildlife while also fulfilling the agency’s mission requires a balanced approach. The American horseshoe crab exemplifies that balance.
      Horseshoe crabs are keystone species in coastal and estuary systems like the ones surrounding Earth’s premier spaceport. By themselves, these resilient arthropods are a strong indicator of how an ecosystem is doing to support the migratory birds, sea turtles, alligators and other wildlife who rely on it for their survival.
      “The presence and abundance of horseshoe crabs influence the structure and functioning of the entire ecosystem,” said James T. Brooks, an environmental protection specialist at NASA Kennedy. “Their eggs provide a vital food source for many shorebirds in coastal habitats, and their feeding activities help shape the composition of plants and animals that live at the bottom of the ocean or in rivers and lakes. Changes in horseshoe crab populations can signal broader ecological issues, such as pollution or habitat loss.”
      As featured recently on NASA+, biologists survey NASA Kennedy’s beaches regularly for horseshoe crabs, counting each one they spot and tagging them with devices that lets researchers study their migration patterns and survival rates. The devices also track the crabs’ spawning activity, habitat health, and population trends, especially during peak breeding seasons in spring and summer.
      All this data helps in assessing the overall health of NASA Kennedy’s ecosystem, but horseshoe crabs also play a vital role in humanity’s health. Their blue, copper-based blood contains a substance called Limulus Amebocyte Lysate, critical for detecting bacterial contamination in medical equipment, pharmaceuticals, and vaccines.
      Their unique value in ensuring biomedical safety underscores why NASA Kennedy emphasizes ecological monitoring in addition to its roles in the global space economy, national defense, and space exploration.
      A male and female American horseshoe crab meet during mating season at NASA’s Kennedy Space Center in Florida. Known scientifically as Limulus polyphemus, the American horseshoe crab is vital to researchers’ understanding of the overall health of NASA Kennedy’s ecosystem. NASA At NASA Kennedy, horseshoe crabs are protected and monitored through habitat restoration projects like rebuilding shorelines eroded by storms and minimizing human impact on nesting sites. These initiatives ensure that the spaceport’s operations coexist harmoniously with nature and deepen our understanding of Earth’s interconnected ecosystems.
      On this Earth Day, NASA Kennedy celebrates the important role these ancient mariners play as we launch humanity’s future.

      About the Author
      Messod C. Bendayan

      Share
      Details
      Last Updated Apr 22, 2025 Related Terms
      Kennedy Space Center Sustainability at Kennedy Space Center Explore More
      2 min read NASA Invites Virtual Guests to Launch of SpaceX 32nd Resupply Mission
      Article 6 days ago 2 min read NASA Invites You to Share Excitement of Agency’s SpaceX Crew-10 Launch
      Article 2 months ago 4 min read Five Facts About NASA’s Moon Bound Technology
      Article 2 months ago Keep Exploring Discover More Topics From NASA
      Earth Day Toolkit
      NASA’s fleet of satellites see the whole Earth, every day. This year, you can celebrate Earth Day with NASA wherever…
      Geostationary Operational Environmental Satellites (GOES)
      This placeholder has been created to be used in the Topic Cards block. PLEASE DO NOT DELETE IT. This post’s…
      Extreme Weather
      As Earth’s climate changes, it is impacting extreme weather across the planet. Record-breaking heat waves on land and in the…
      Why Have a Telescope in Space?
      Hubble was designed as a general purpose observatory, meant to explore the universe in visible, ultraviolet, and infrared wavelengths. To…
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sols 4507-4508: “Just Keep Driving”
      NASA’s Mars rover Curiosity acquired this image using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm, on April 9, 2025, Sol 4505 of the Mars Science Laboratory Mission, at 00:56:30 UTC. NASA/JPL-Caltech/MSSS Written by Natalie Moore, Mission Operations Specialist at Malin Space Science Systems
      Earth planning date: Wednesday, April 9, 2025
      Our drive from Monday’s plan was mostly successful, putting us ~22 meters down the “road” out of an expected 30 meters. A steering command halted the drive a little short when we tried to turn-in-place but instead turned into a rock, which also had the effect of making our position too unstable for arm activities. Oh well! APXS data has been showing the recent terrain as being pretty similar in composition, so the team isn’t complaining about trying again after another drive. Plus, keeping the arm stowed should give us a little more power to play with in the coming sols (an ongoing struggle this Martian winter).
      Recently, my job on Mastcam has been to make sure our science imaging is as concurrent as possible with required rover activities. This strategy helps save rover awake time, AKA power consumption. Today we did a pretty good job with this, only increasing the total awake time by ~2 minutes even though we planned 52 images! Our imaging today included a mosaic of the “Devil’s Gate” ridge including some nodular bedrock and distant “Torote Bowl,” a mosaic of a close-by vein network named “Moonstone Beach,” and several sandy troughs surrounding the bedrock blocks we see here. 
      ChemCam is planning a LIBS raster on a vertical vein in our workspace named “Jackrabbit Flat,” and a distant RMI mosaic of “Condor Peak” (a butte to the north we’re losing view of). Our drive will happen in the 1400 hour on the first sol, hopefully landing us successfully 53 meters further into this new valley on our way to the boxwork structures to the west! Post-drive, we’re including a test of a “Post Traverse Autonav Terrain Observation” AKA PoTATO – an easy drop-in activity for ground analysis of a rover-built navigation map of our new terrain. Plus we get to say PoTATO a lot.
      Explore More
      3 min read Sols 4505-4506: Up, up and onto the Devil’s Gate 


      Article


      3 days ago
      3 min read Sols 4502-4504: Sneaking Past Devil’s Gate


      Article


      4 days ago
      3 min read Sols 4500-4501: Bedrock With a Side of Sand


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Mars Resources


      Explore this page for a curated collection of Mars resources.


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Curiosity Rover (MSL)


      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Astronauts Victor Glover and Christina Koch tour the Arc Jet Facility at NASA’s Ames Research Center, learning more about the testing equipment’s capabilities to analyze thermal protection systems from George Raiche, thermophysics facilities branch chief at Ames.NASA/Donald Richey As NASA prepares to send astronauts to the Moon aboard the Orion spacecraft, research, testing, and development at NASA’s Ames Research Center in California’s Silicon Valley has played a critical role.
      Recently, Ames welcomed Artemis II astronauts Christina Koch and Victor Glover and Orion leaders Debbie Korth, deputy program manager, and Luis Saucedo, deputy crew and service module manager, to tour Ames facilities that support the Orion Program and celebrate the achievements of employees.
      The group started their visit at the Arc Jet Complex, where researchers use extremely hot, high-speed gases to simulate the intense heat of atmospheric reentry before visiting the Sensors & Thermal Protection Systems Advanced Research Laboratories. The team works to develop sensors and flight instrumentation that measure heat shield response throughout a mission.
      These systems were used to develop and test Orion’s thermal protection system to ensure the safety of astronauts during future missions. After the successful return of the Artemis I Orion spacecraft, Ames research was essential when analyzing unexpected charring loss on the heat shield.
      Debbie Korth, Orion deputy program manager, presents awards to the Ames workforce at the Orion Circle of Excellence Awards Ceremony, while astronauts Christina Koch and Victor Glover look on.NASA/Donald Richey The visit culminated in an award ceremony to honor employees with outstanding performance and a legacy of service to the Orion Program. Thirty-two employees were honored for their individual or team contributions.
      “The Ames workforce has played an important role in developing, testing, and validating the Orion spacecraft’s thermal protection system as well as supporting its software and guidance, navigation, and control,” said Eugene Tu, NASA Ames center director. “I’m pleased to see their contributions recognized and celebrated by program leadership and two of the astronauts whose safety and success were in mind when ensuring these systems are safe, reliable, and the highest quality possible.”
      Share
      Details
      Last Updated Apr 02, 2025 Related Terms
      Ames Research Center Artemis Christina H. Koch Exploration Systems Development Mission Directorate General Orion Program Victor J. Glover Explore More
      2 min read What Are the Dangers of Going to Space? We Asked a NASA Expert: Episode 55
      Article 1 hour ago 2 min read NASA Receives 10 Nominations for the 29th Annual Webby Awards
      Article 1 day ago 4 min read NASA Trains for Orion Water Recovery Ahead of Artemis II Launch
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Ames Research Center
      Orion Spacecraft
      Arc Jet Complex
      Thermal Protection Materials Branch
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      At left is NASA’s Perseverance Mars rover, with a circle indicating the location of the calibration target for the rover’s SHERLOC instrument. At right is a close-up of the calibration target. Along the bottom row are five swatches of spacesuit materials that scientists are studying as they de-grade.NASA/JPL-Caltech/MSSS The rover carries several swatches of spacesuit materials, and scientists are assessing how they’ve held up after four years on the Red Planet.
      NASA’s Perseverance rover landed on Mars in 2021 to search for signs of ancient microbial life and to help scientists understand the planet’s climate and geography. But another key objective is to pave the way for human exploration of Mars, and as part of that effort, the rover carries a set of five spacesuit material samples. Now, after those samples have endured four years of exposure on Mars’ dusty, radiation-soaked surface, scientists are beginning the next phase of studying them.
      The end goal is to predict accurately the usable lifetime of a Mars spacesuit. What the agency learns about how the materials perform on Mars will inform the design of future spacesuits for the first astronauts on the Red Planet.
      This graphic shows an illustration of a prototype astronaut suit, left, along with suit samples included aboard NASA’s Perseverance rover. They are the first spacesuit materials ever sent to Mars. NASA “This is one of the forward-looking aspects of the rover’s mission — not just thinking about its current science, but also about what comes next,” said planetary scientist Marc Fries of NASA’s Johnson Space Center in Houston, who helped provide the spacesuit materials. “We’re preparing for people to eventually go and explore Mars.”
      The swatches, each three-quarters of an inch square (20 millimeters square), are part of a calibration target used to test the settings of SHERLOC (Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals), an instrument on the end of Perseverance’s arm.
      The samples include a piece of polycarbonate helmet visor; Vectran, a cut-resistant material used for the palms of astronaut gloves; two kinds of Teflon, which has dust-repelling nonstick properties; and a commonly used spacesuit material called Ortho-Fabric. This last fabric features multiple layers, including Nomex, a flame-resistant material found in firefighter outfits; Gore-Tex, which is waterproof but breathable; and Kevlar, a strong material used in bulletproof vests that makes spacesuits more rip-resistant.
      Martian Wear and Tear
      Mars is far from hospitable. It has freezing temperatures, fine dust that can stick to solar panels and spacesuits (causing wear and tear on the latter), and a surface rife with perchlorates, a kind of corrosive salt that can be toxic to humans.
      There’s also lots of solar radiation. Unlike Earth, which has a magnetic field that deflects much of the Sun’s radiation, Mars lost its magnetic field billions of years ago, followed by much of its atmosphere. Its surface has little protection from the Sun’s ultraviolet light (which is why researchers have looked into how rock formations and caves could provide astronauts some shielding).
      “Mars is a really harsh, tough place,” said SHERLOC science team member Joby Razzell Hollis of the Natural History Museum in London. “Don’t underestimate that — the radiation in particular is pretty nasty.”
      Razzell Hollis was a postdoctoral fellow at NASA’s Jet Propulsion Laboratory in Southern California from 2018 to 2021, where he helped prepare SHERLOC for arrival on Mars and took part in science operations once the rover landed. A materials scientist, Razzell Hollis has previously studied the chemical effects of sunlight on a new kind of solar panel made from plastic, as well as on plastic pollution floating in the Earth’s oceans.
      He likened those effects to how white plastic lawn chairs become yellow and brittle after years in sunlight. Roughly the same thing happens on Mars, but the weathering likely happens faster because of the high exposure to ultraviolet light there.
      The key to developing safer spacesuit materials will be understanding how quickly they would wear down on the Martian surface. About 50% of the changes SHERLOC witnessed in the samples happened within Perseverance’s first 200 days on Mars, with the Vectran appearing to change first.
      Another nuance will be figuring out how much solar radiation different parts of a spacesuit will have to withstand. For example, an astronaut’s shoulders will be more exposed — and likely encounter more radiation — than his or her palms.
      Next Steps
      The SHERLOC team is working on a science paper detailing initial data on how the samples have fared on Mars. Meanwhile, scientists at NASA Johnson are eager to simulate that weathering in special chambers that mimic the carbon dioxide atmosphere, air pressure, and ultraviolet light on the Martian surface. They could then compare the results generated on Earth while putting the materials to the test with those seen in the SHERLOC data. For example, the researchers could stretch the materials until they break to check if they become more brittle over time.
      “The fabric materials are designed to be tough but flexible, so they protect astronauts but can bend freely,” Fries said. “We want to know the extent to which the fabrics lose their strength and flexibility over time. As the fabrics weaken, they can fray and tear, allowing a spacesuit to leak both heat and air.”
      More About Perseverance
      A key objective for Perseverance’s mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover is characterizing the planet’s geology and past climate, to help pave the way for human exploration of the Red Planet, and is the first mission to collect and cache Martian rock and regolith.
      NASA’s Mars Sample Return Program, in cooperation with ESA (European Space Agency), is designed to send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
      The Mars 2020 Perseverance mission is part of NASA’s Mars Exploration Program (MEP) portfolio and the agency’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
      NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech in Pasadena, California, built and manages operations of the Perseverance rover.
      For more about Perseverance:
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Share
      Details
      Last Updated Mar 26, 2025 Related Terms
      Perseverance (Rover) Johnson Space Center Mars Mars 2020 Radioisotope Power Systems (RPS) Explore More
      3 min read Engineering Reality: Lee Bingham Leads Lunar Surface Simulation Support for Artemis Campaign
      Article 2 days ago 6 min read NASA’s Curiosity Rover Detects Largest Organic Molecules Found on Mars
      Researchers analyzing pulverized rock onboard NASA’s Curiosity rover have found the largest organic compounds on…
      Article 2 days ago 3 min read 50 Years Ago: Final Saturn Rocket Rolls Out to Launch Pad 39 
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...