Jump to content

Recommended Posts

Posted
low_STSCI-H-p1936a-k-1340x520.png

Jupiter is the king of the solar system, more massive than all of the other solar-system planets combined. Although astronomers have been observing the gas-giant planet for hundreds of years, it still remains a mysterious world.

Astronomers don't have definitive answers, for example, of why cloud bands and storms change colors, or why storms shrink in size. The most prominent long-lasting feature, the Great Red Spot, has been downsizing since the 1800s. However, the giant storm is still large enough to swallow Earth.

The Red Spot is anchored in a roiling atmosphere that is powered by heat welling up from the monster planet's deep interior, which drives a turbulent atmosphere. In contrast, sunlight powers Earth's atmosphere. From Jupiter, however, the Sun is much fainter because the planet is much farther away from it. Jupiter's upper atmosphere is a riot of colorful clouds, contained in bands that whisk along at different wind speeds and in alternating directions. Dynamic features such as cyclones and anticyclones (high-pressure storms that rotate counterclockwise in the southern hemisphere) abound.

Attempting to understand the forces driving Jupiter's atmosphere is like trying to predict the pattern cream will make when it is poured into a hot cup of coffee. Researchers are hoping that Hubble's yearly monitoring of the planet—as an interplanetary weatherman—will reveal the shifting behavior of Jupiter's clouds. Hubble images should help unravel many of the planet's outstanding puzzles. This new Hubble image is part of that yearly study, called the Outer Planets Atmospheres Legacy program, or OPAL.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA NASA astronauts Jonny Kim and Zena Cardman, both Expedition 73 Flight Engineers, pose for a portrait inside the International Space Station‘s Unity module during a break in weekend housecleaning and maintenance activities. Kim and Cardman are both part of NASA Astronaut Group 22 selected in June 2017 with 12 other astronauts, including two Canadian Space Agency astronauts, and affectionately nicknamed “The Turtles.”
      In its third decade of continuous human presence, the space station has a far-reaching impact as a microgravity lab hosting technology, demonstrations, and scientific investigations from a range of fields. The research done by astronauts on the orbiting laboratory will inform long-duration missions like Artemis and future human expeditions to Mars.
      Learn more about station activities by following the space station blog.
      View the full article
    • By NASA
      Explore This Section Overview Science Science Findings Juno’s Orbits Spacecraft People Stories Multimedia JunoCam Images Jupiter hosts the brightest and most spectacular auroras in the Solar System. Near its poles, these shimmering lights offer a glimpse into how the planet interacts with the solar wind and moons swept by Jupiter’s magnetic field. Unlike Earth’s northern lights, the largest moons of Jupiter create their own auroral signatures in the planet’s atmosphere — a phenomenon that Earth’s Moon does not produce. These moon-induced auroras, known as “satellite footprints,” reveal how each moon interacts with its local space environment.
      Juno capturing the marks on Jupiter of all four Galilean moons. The auroras related to each are labeled Io, Eur (for Europa), Gan (for Ganymede), and Cal (for Callisto). NASA/JPL-Caltech/SwRI/UVS team/MSSS/Gill/Jónsson/Perry/Hue/Rabia Before NASA’s Juno mission, three of Jupiter’s four largest moons, known as Galilean moons — Io, Europa, and Ganymede — were shown to produce these distinct auroral signatures. But Callisto, the most distant of the Galilean moons, remained a mystery. Despite multiple attempts using NASA’s Hubble Space Telescope, Callisto’s footprint had proven elusive, both because it is faint and because it most often lies atop the brighter main auroral oval, the region where auroras are displayed.
      NASA’s Juno mission, orbiting Jupiter since 2016, offers unprecedented close-up views of these polar light shows. But to image Callisto’s footprint, the main auroral oval needs to move aside while the polar region is being imaged. And to bring to bear Juno’s arsenal of instruments studying fields and particles, the spacecraft’s trajectory must carry it across the magnetic field line linking Callisto and Jupiter. 
      These two events serendipitously occurred during Juno’s 22nd orbit of the giant planet, in September 2019, revealing Callisto’s auroral footprint and providing a sample of the particle population, electromagnetic waves, and magnetic fields associated with the interaction. 
      Jupiter’s magnetic field extends far beyond its major moons, carving out a vast region (magnetosphere) enveloped by, and buffeted by, the solar wind streaming from our Sun. Just as solar storms on Earth push the northern lights to more southern latitudes, Jupiter’s auroras are also affected by our Sun’s activity. In September 2019, a massive, high-density solar stream buffeted Jupiter’s magnetosphere, briefly revealing — as the auroral oval moved toward Jupiter’s equator — a faint but distinct signature associated with Callisto. This discovery finally confirms that all four Galilean moons leave their mark on Jupiter’s atmosphere, and that Callisto’s footprints are sustained much like those of its siblings, completing the family portrait of the Galilean moon auroral signatures.
      An international team of scientists led by Jonas Rabia of the Institut de Recherche en Astrophysique et Planétologie (IRAP), CNRS, CNES, in Toulouse, France, published their paper on the discovery, “In situ and remote observations of the ultraviolet footprint of the moon Callisto by the Juno spacecraft,” in the journal Nature Communications on Sept. 1, 2025.
      Share








      Details
      Last Updated Sep 02, 2025 Related Terms
      Auroras Callisto Juno Jupiter Jupiter Moons Keep Exploring Discover More Topics From NASA
      Jupiter: Exploration



      Jupiter



      Jupiter Moons



      Callisto


      View the full article
    • By European Space Agency
      Less than three weeks since the first MetOp Second Generation weather satellite, MetOp-SG-A1, was launched, this remarkable new satellite has already started transmitting data from two of its cutting-edge instruments, offering a tantalising glimpse of what’s to come.
      View the full article
    • By NASA
      NASA’s IMAP (Interstellar Mapping and Acceleration Probe) mission will map the boundaries of the heliosphere, the bubble created by the solar wind that protects our solar system from cosmic radiation. Credit: NASA/Princeton/Patrick McPike NASA will hold a media teleconference at 12 p.m. EDT on Thursday, Sept. 4, to discuss the agency’s upcoming Sun and space weather missions, IMAP (Interstellar Mapping and Acceleration Probe) and Carruthers Geocorona Observatory. The two missions are targeting launch on the same rocket no earlier than Tuesday, Sept. 23.
      The IMAP mission will map the boundaries of our heliosphere, the vast bubble created by the Sun’s wind that encapsulates our entire solar system. As a modern-day celestial cartographer, IMAP will explore how the heliosphere interacts with interstellar space, as well as chart the range of particles that fill the space between the planets. The IMAP mission also will support near real-time observations of the solar wind and energetic particles. These energetic particles can produce hazardous space weather that can impact spacecraft and other NASA hardware as the agency explores deeper into space, including at the Moon under the Artemis campaign.
      NASA’s Carruthers Geocorona Observatory will image the ultraviolet glow of Earth’s exosphere, the outermost region of our planet’s atmosphere. This data will help scientists understand how space weather from the Sun shapes the exosphere and ultimately impacts our planet. The first observation of this glow – called the geocorona – was captured during Apollo 16, when a telescope designed and built by George Carruthers was deployed on the Moon.
      Audio of the teleconference will stream live on the agency’s website at:
      https://www.nasa.gov/live
      Participants include:
      Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington Teresa Nieves-Chinchilla, director, Moon to Mars Space Weather Analysis Office, NASA’s Goddard Space Flight Center in Greenbelt, Maryland David J. McComas, IMAP principal investigator, Princeton University Lara Waldrop, Carruthers Geocorona Observatory principal investigator, University of Illinois Urbana-Champaign To participate in the media teleconference, media must RSVP no later than 11 a.m. on Sept. 4 to Sarah Frazier at: sarah.frazier@nasa.gov. NASA’s media accreditation policy is available online.
      The IMAP and Carruthers Geocorona Observatory missions will launch on a SpaceX Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Also launching on this flight will be the National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Follow On – Lagrange 1 (SWFO-L1), which will monitor solar wind disturbances and detect and track coronal mass ejections before they reach Earth.
      David McComas, professor, Princeton University, leads the IMAP mission with an international team of 27 partner institutions. The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, built the spacecraft and will operate the mission. NASA’s IMAP is the fifth mission in NASA’s Solar Terrestrial Probes Program portfolio.
      The Carruthers Geocorona Observatory mission is led by Lara Waldrop from the University of Illinois Urbana-Champaign. Mission implementation is led by the Space Sciences Laboratory at University of California, Berkeley, which also designed and built the two ultraviolet imagers. BAE Systems designed and built the Carruthers spacecraft.
      The Solar Terrestrial Probes Program Office, part of the Explorers and Heliophysics Project Division at NASA Goddard, manages the IMAP and Carruthers Geocorona Observatory missions for NASA’s Science Mission Directorate.
      NASA’s Launch Services Program, based at NASA Kennedy, manages the launch service for the mission.
      To learn more about IMAP, please visit:
      https://www.nasa.gov/imap
      -end-
      Abbey Interrante / Karen Fox
      Headquarters, Washington
      301-201-0124 / 202-358-1600
      abbey.a.interrante@nasa.gov / karen.c.fox@nasa.gov
      Sarah Frazier
      Goddard Space Flight Center, Greenbelt, Md.
      202-853-7191
      sarah.frazier@nasa.gov
      Share
      Details
      Last Updated Aug 28, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Heliophysics Carruthers Geocorona Observatory (GLIDE) Goddard Space Flight Center Heliophysics Division Heliosphere IMAP (Interstellar Mapping and Acceleration Probe) Kennedy Space Center Launch Services Program Science Mission Directorate Solar Terrestrial Probes Program View the full article
    • By NASA
      From left to right: JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui, and NASA astronauts Jonny Kim (seated), Zena Cardman, and Mike Fincke conduct training scenarios with their instructors at NASA’s Johnson Space Center in Houston, for their upcoming mission to the International Space Station. Credit: NASA/Helen Arase Vargas NASA astronaut Jonny Kim and JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui will connect with students in New York as they answer prerecorded science, technology, engineering, and mathematics (STEM) questions aboard the International Space Station.
      The Earth-to-space call will begin at 9:20 a.m. EDT on Friday, Sept. 5, and will stream live on the agency’s Learn With NASA YouTube channel.
      Media interested in covering the event must RSVP by 5 p.m. Wednesday, Sept. 3, to Sara Sloves at: 917-441-1234 or ssloves@thecomputerschool.org.
      The Computer School will host this event in New York for middle school students. The goal of this event is to extend learning by exposing students to the real-world experiences and engineering challenges of astronauts working and living aboard the International Space Station.
      For nearly 25 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Research and technology investigations taking place aboard the space station benefit people on Earth and lay the groundwork for other agency deep space missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars, inspiring the world through discovery in a new Golden Age of innovation and exploration.
      See more information on NASA in-flight calls at:
      https://www.nasa.gov/stemonstation
      -end-
      Gerelle Dodson
      Headquarters, Washington
      202-358-1600
      gerelle.q.dodson@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Aug 28, 2025 LocationNASA Headquarters Related Terms
      In-flight Education Downlinks Humans in Space International Space Station (ISS) Johnson Space Center Learning Resources NASA Headquarters View the full article
  • Similar Videos

  • Check out these Videos

×
×
  • Create New...