Members Can Post Anonymously On This Site
Slime Mold Simulations Used to Map the Dark Matter Holding the Universe Together
-
Similar Topics
-
By European Space Agency
Astronomers have discovered a huge filament of hot gas bridging four galaxy clusters. At 10 times as massive as our galaxy, the thread could contain some of the Universe’s ‘missing’ matter, addressing a decades-long mystery.
View the full article
-
By NASA
A funky effect Einstein predicted, known as gravitational lensing — when a foreground galaxy magnifies more distant galaxies behind it — will soon become common when NASA’s Nancy Grace Roman Space Telescope begins science operations in 2027 and produces vast surveys of the cosmos.
This image shows a simulated observation from NASA’s Nancy Grace Roman Space Telescope with an overlay of its Wide Field Instrument’s field of view. More than 20 gravitational lenses, with examples shown at left and right, are expected to pop out in every one of Roman’s vast observations. A journal paper led by Bryce Wedig, a graduate student at Washington University in St. Louis, Missouri, estimates that of those Roman detects, about 500 from the telescope’s High-Latitude Wide-Area Survey will be suitable for dark matter studies. By examining such a large population of gravitational lenses, the researchers hope to learn a lot more about the mysterious nature of dark matter.Credit: NASA, Bryce Wedig (Washington University), Tansu Daylan (Washington University), Joseph DePasquale (STScI) A particular subset of gravitational lenses, known as strong lenses, is the focus of a new paper published in the Astrophysical Journal led by Bryce Wedig, a graduate student at Washington University in St. Louis. The research team has calculated that over 160,000 gravitational lenses, including hundreds suitable for this study, are expected to pop up in Roman’s vast images. Each Roman image will be 200 times larger than infrared snapshots from NASA’s Hubble Space Telescope, and its upcoming “wealth” of lenses will vastly outpace the hundreds studied by Hubble to date.
Roman will conduct three core surveys, providing expansive views of the universe. This science team’s work is based on a previous version of Roman’s now fully defined High-Latitude Wide-Area Survey. The researchers are working on a follow-up paper that will align with the final survey’s specifications to fully support the research community.
“The current sample size of these objects from other telescopes is fairly small because we’re relying on two galaxies to be lined up nearly perfectly along our line of sight,” Wedig said. “Other telescopes are either limited to a smaller field of view or less precise observations, making gravitational lenses harder to detect.”
Gravitational lenses are made up of at least two cosmic objects. In some cases, a single foreground galaxy has enough mass to act like a lens, magnifying a galaxy that is almost perfectly behind it. Light from the background galaxy curves around the foreground galaxy along more than one path, appearing in observations as warped arcs and crescents. Of the 160,000 lensed galaxies Roman may identify, the team expects to narrow that down to about 500 that are suitable for studying the structure of dark matter at scales smaller than those galaxies.
“Roman will not only significantly increase our sample size — its sharp, high-resolution images will also allow us to discover gravitational lenses that appear smaller on the sky,” said Tansu Daylan, the principal investigator of the science team conducting this research program. Daylan is an assistant professor and a faculty fellow at the McDonnell Center for the Space Sciences at Washington University in St. Louis. “Ultimately, both the alignment and the brightness of the background galaxies need to meet a certain threshold so we can characterize the dark matter within the foreground galaxies.”
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
This video shows how a background galaxy’s light is lensed or magnified by a massive foreground galaxy, seen at center, before reaching NASA’s Roman Space Telescope. Light from the background galaxy is distorted, curving around the foreground galaxy and appearing more than once as warped arcs and crescents. Researchers studying these objects, known as gravitational lenses, can better characterize the mass of the foreground galaxy, which offers clues about the particle nature of dark matter.Credit: NASA, Joseph Olmsted (STScI) What Is Dark Matter?
Not all mass in galaxies is made up of objects we can see, like star clusters. A significant fraction of a galaxy’s mass is made up of dark matter, so called because it doesn’t emit, reflect, or absorb light. Dark matter does, however, possess mass, and like anything else with mass, it can cause gravitational lensing.
When the gravity of a foreground galaxy bends the path of a background galaxy’s light, its light is routed onto multiple paths. “This effect produces multiple images of the background galaxy that are magnified and distorted differently,” Daylan said. These “duplicates” are a huge advantage for researchers — they allow multiple measurements of the lensing galaxy’s mass distribution, ensuring that the resulting measurement is far more precise.
Roman’s 300-megapixel camera, known as its Wide Field Instrument, will allow researchers to accurately determine the bending of the background galaxies’ light by as little as 50 milliarcseconds, which is like measuring the diameter of a human hair from the distance of more than two and a half American football fields or soccer pitches.
The amount of gravitational lensing that the background light experiences depends on the intervening mass. Less massive clumps of dark matter cause smaller distortions. As a result, if researchers are able to measure tinier amounts of bending, they can detect and characterize smaller, less massive dark matter structures — the types of structures that gradually merged over time to build up the galaxies we see today.
With Roman, the team will accumulate overwhelming statistics about the size and structures of early galaxies. “Finding gravitational lenses and being able to detect clumps of dark matter in them is a game of tiny odds. With Roman, we can cast a wide net and expect to get lucky often,” Wedig said. “We won’t see dark matter in the images — it’s invisible — but we can measure its effects.”
“Ultimately, the question we’re trying to address is: What particle or particles constitute dark matter?” Daylan added. “While some properties of dark matter are known, we essentially have no idea what makes up dark matter. Roman will help us to distinguish how dark matter is distributed on small scales and, hence, its particle nature.”
Preparations Continue
Before Roman launches, the team will also search for more candidates in observations from ESA’s (the European Space Agency’s) Euclid mission and the upcoming ground-based Vera C. Rubin Observatory in Chile, which will begin its full-scale operations in a few weeks. Once Roman’s infrared images are in hand, the researchers will combine them with complementary visible light images from Euclid, Rubin, and Hubble to maximize what’s known about these galaxies.
“We will push the limits of what we can observe, and use every gravitational lens we detect with Roman to pin down the particle nature of dark matter,” Daylan said.
The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc. in Boulder, Colorado; L3Harris Technologies in Melbourne, Florida; and Teledyne Scientific & Imaging in Thousand Oaks, California.
By Claire Blome
Space Telescope Science Institute, Baltimore, Md.
Share
Details
Last Updated Jun 12, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationNASA Goddard Space Flight Center Related Terms
Nancy Grace Roman Space Telescope Astrophysics Dark Matter Galaxies Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research The Universe Explore More
6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
Article 2 months ago 5 min read Millions of Galaxies Emerge in New Simulated Images From NASA’s Roman
Article 2 years ago 6 min read Team Preps to Study Dark Energy via Exploding Stars With NASA’s Roman
Article 3 months ago View the full article
-
By NASA
What do music ensembles and human spaceflight have in common? They require the harmonization of different elements to create an inspiring opus.
NASA’s Paige Whittington has experience with both.
As a principal flutist for Purdue University’s Wind Ensemble, Whittington helped fellow flutists play beautiful music together while pursuing her graduate degree. Now, as a space exploration simulation architect at Johnson Space Center in Houston, she strives for a cross-team harmony that can inform the agency’s Moon to Mars exploration approach.
“Simulation often sits at the intersection of several teams because we integrate various designs and mission requirements,” she said. “We have to learn how to best fit those teams and their priorities together to enable cutting-edge human exploration.”
Official NASA portrait of Paige Whittington.NASA/Josh Valcarcel Whittington is part of the NASA Exploration Systems Simulations (NExSyS) team, which develops physics-based simulations to evaluate various vehicles and mission concepts. Her role includes working with lunar and Mars architecture teams within NASA’s Strategy and Architecture Office to assess current and potential future elements of vehicle design, logistics, and planning.
“Our simulations help inform engineers, astronauts, and managers about the new, challenging environments that await us on the Moon and Mars,” she said.
One of the most challenging and rewarding projects she is working on is the Artemis Distributed Simulation. “NExSyS develops and maintains several individual simulations such as rovers, landers, and habitats. However, human exploration on other planetary bodies requires careful integration and coordination of these individual pieces,” she explained.
The distributed simulation brings those pieces together to enable agency teams to envision a complete Artemis mission to the lunar surface. Different elements can be added or removed to create a wide variety of scenarios. The simulation can run automatically with predetermined settings or be responsive to real-time and randomized changes. Participants can operate the team’s video walls, mock-up mission control console, virtual reality platforms, and lander piloting facility to interact together within the chosen Artemis mission scenario.
Paige Whittington standing in front of the Video Wall used for human-in-the-loop simulations located inside the Systems Engineering Simulator facility at NASA’s Johnson Space Center. Image courtesy of Paige Whittington “I am very proud to know that the simulations I help develop have impacted some of the decisions being made by NASA’s architecture teams,” she said.
She is excited to take on a new responsibility, as well. Whittington recently became project manager of the JSC Engineering Orbital Dynamics software package. Also known as JEOD, this open-source tool was created by NASA to model spacecraft trajectories, such as proposed flight paths for a lunar lander. JEOD calculates gravitational and other environmental forces acting on spacecraft to simulate the position and orientation of those vehicles over time, whether they are orbiting a cosmic body or traveling between planets.
Whittington’s family moved frequently during her childhood, calling five different states home as she grew up. Their time in Florida would have a life-long impact.
“My parents drove me and my sister across the state to visit NASA’s Kennedy Space Center. It was mesmerizing, awe-inspiring, and seemingly a whole different world from where my 8-year-old self thought I was living,” she said. Her love of space never waned, and a high school physics teacher encouraged her to study aerospace engineering in college. “That was the turning point when I realized space exploration didn’t have to stay in my dreams – it was a career field I could actually work in.”
Whittington took her teacher’s advice, earning a bachelor’s degree in aerospace engineering from the University of Texas at Austin. She also completed two internships at Johnson through the Universities Space Research Association and interned with a NASA contractor after graduation. While pursuing a master’s degree in Aeronautics and Astronautics at Purdue, Whittington was accepted to NASA’s Pathways Program and did two rotations with the Simulation and Graphics Branch before joining the team as a full-time employee in June 2022.
Paige Whittington celebrating the launch of Artemis I at Johnson Space Center in 2022. Image courtesy of Paige Whittington Whittington has learned several key lessons during her five years with NASA, including the essential part open, regular communication plays in understanding an individual’s or team’s core needs and limitations. She also stressed the importance of adaptability.
“The path that you planned for may not be the path you end up choosing. But that planning enabled you to be who you are now and to make different choices,” she said. “I did not anticipate working in simulations when I started my aerospace engineering degree, but I took the opportunity when it was presented, and I am so happy that I did.”
Explore More
9 min read Station Nation: Meet Megan Harvey, Utilization Flight Lead and Capsule Communicator
Article 6 days ago 4 min read Andrea Harrington’s Vision Paves the Way for Lunar Missions
Article 1 week ago 4 min read Aubrie Henspeter: Leading Commercial Lunar Missions
Article 2 weeks ago View the full article
-
By NASA
NASA named Stanford University of California winner of the Lunar Autonomy Challenge, a six-month competition for U.S. college and university student teams to virtually map and explore using a digital twin of NASA’s In-Situ Resource Utilization Pilot Excavator (IPEx).
The winning team successfully demonstrated the design and functionality of their autonomous agent, or software that performs specified actions without human intervention. Their agent autonomously navigated the IPEx digital twin in the virtual lunar environment, while accurately mapping the surface, correctly identifying obstacles, and effectively managing available power.
Lunar simulation developed by the winning team of the Lunar Autonomy Challenge’s first place team from Stanford University.Credit: Stanford University’s NAV Lab team Lunar simulation developed by the winning team of the Lunar Autonomy Challenge’s first place team from Stanford University.Credit: Stanford University’s NAV Lab team Team photo of NAV Lab Lunar Autonomy Challenge from Stanford UniversityCredit: Stanford University’s NAV Lab team The Lunar Autonomy Challenge has been a truly unique experience. The challenge provided the opportunity to develop and test methods in a highly realistic simulation environment."
Adam dai
Lunar Autonomy Challenge team lead, Stanford University
Dai added, “It pushed us to find solutions robust to the harsh conditions of the lunar surface. I learned so much through the challenge, both about new ideas and methods, as well as through deepening my understanding of core methods across the autonomy stack (perception, localization, mapping, planning). I also very much enjoyed working together with my team to brainstorm different approaches and strategies and solve tangible problems observed in the simulation.”
The challenge offered 31 teams a valuable opportunity to gain experience in software development, autonomy, and machine learning using cutting-edge NASA lunar technology. Participants also applied essential skills common to nearly every engineering discipline, including technical writing, collaborative teamwork, and project management.
The Lunar Autonomy Challenge supports NASA’s Lunar Surface Innovation Initiative (LSII), which is part of the Space Technology Mission Directorate. The LSII aims to accelerate technology development and pursue results that will provide essential infrastructure for lunar exploration by collaborating with industry, academia, and other government agencies.
The work displayed by all of these teams has been impressive, and the solutions they have developed are beneficial to advancing lunar and Mars surface technologies as we prepare for increasingly complex missions farther from home.”
Niki Werkheiser
Director of Technology Maturation and LSII lead, NASA Headquarters
“To succeed, we need input from everyone — every idea counts to propel our goals forward. It is very rewarding to see these students and software developers contributing their skills to future lunar and Mars missions,” Werkheiser added.
Through the Lunar Autonomy Challenge, NASA collaborated with the Johns Hopkins Applied Physics Laboratory, Caterpillar Inc., and Embodied AI. Each team contributed unique expertise and tools necessary to make the challenge a success.
The Applied Physics Laboratory managed the challenge for NASA. As a systems integrator for LSII, they provided expertise to streamline rigor and engineering discipline across efforts, ensuring the development of successful, efficient, and cost-effective missions — backed by the world’s largest cohort of lunar scientists.
Caterpillar Inc. is known for its construction and excavation equipment and operates a large fleet of autonomous haul trucks. They also have worked with NASA for more than 20 years on a variety of technologies, including autonomy, 3D printing, robotics, and simulators as they continue to collaborate with NASA on technologies that support NASA’s mission objectives and provide value to the mining and construction industries.
Embodied AI collaborated with Caterpillar to integrate the simulation into the open-source driving environment used for the challenge. For the Lunar Autonomy Challenge, the normally available digital assets of the CARLA simulation platform, such as urban layouts, buildings, and vehicles, were replaced by an IPEx “Digital Twin” and lunar environmental models.
“This collaboration is a great example of how the government, large companies, small businesses, and research institutions can thoughtfully leverage each other’s different, but complementary, strengths,” Werkheiser added. “By substantially modernizing existing tools, we can turn today’s novel technologies into tomorrow’s institutional capabilities for more efficient and effective space exploration, while also stimulating innovation and economic growth on Earth.”
FINALIST TEAMS
First Place
NAV Lab team
Stanford University, Stanford, California
Second Place
MAPLE (MIT Autonomous Pathfinding for Lunar Exploration) team
Massachusetts Institute of Technology, Cambridge, MA
Third Place
Moonlight team
Carnegie Mellon University, Pittsburgh, PA
OTHER COMPETING TEAMS
Lunar ExplorersArizona State UniversityTempe, ArizonaAIWVU West Virginia University Morgantown, West VirginiaStellar Sparks California Polytechnic Institute Pomona Pomona, California LunatiX Johns Hopkins University Whiting School of EngineeringBaltimore CARLA CSU California State University, Stanislaus Turlock, CaliforniaRose-Hulman Rose-Hulman Institute of Technology Terre Haute, IndianaLunar PathfindersAmerican Public University SystemCharles Town, West Virginia Lunar Autonomy Challenge digital simulation of lunar surface activity using a digital twin of NASA’s ISRU Pilot ExcavatorJohns Hopkins Applied Physics Laboratory Keep Exploring Discover More Topics From NASA
Space Technology Mission Directorate
NASA’s Lunar Surface Innovation Initiative
Game Changing Development Projects
Game Changing Development projects aim to advance space technologies, focusing on advancing capabilities for going to and living in space.
ISRU Pilot Excavator
View the full article
-
By NASA
Explore This Section Science Science Activation Take a Tour of the Cosmos with… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 4 min read
Take a Tour of the Cosmos with New Interactives from NASA’s Universe of Learning
Ready for a tour of the cosmos? NASA’s Universe of Learning has released a new, dynamic way for lifelong learners to explore NASA’s breathtaking images of the universe—ViewSpace interactive Image Tours. ViewSpace has an established track record of providing museums, science centers, libraries, and other informal learning environments with free, web-based videos and digital interactives—like its interactive Image Sliders. These new Image Tours are another unique experience from NASA’s Universe of Learning, created through a collaboration between scientists that operate NASA telescopes and experts well-versed in the most modern methods of learning. Hands-on, self-directed learning resources like these have long been valued by informal learning sites as effective means for engaging and intriguing users with the latest discoveries from NASA’s space telescope missions—while encouraging lifelong learners to continue their passionate exploration of the stars, galaxies, and distant worlds.
With these new ViewSpace Image Tours, visitors can take breathtaking journeys through space images that contain many exciting stories. The “Center of the Milky Way Galaxy” Tour, for example, uses breathtaking images from NASA’s Hubble, Spitzer, and Chandra X-ray telescopes and includes eleven Tour Stops, where users can interact with areas like “the Brick”—a dense, dark cloud of hydrogen molecules imaged by Spitzer. Another Tour Stop zooms toward the supermassive black hole, Sagittarius A*, offering a dramatic visual journey to the galaxy’s core.
In other tours, like the “Herbig-Haro 46/47” Tour, learners can navigate through points of interest in an observation from a single telescope mission. In this case, NASA’s James Webb Space Telescope provides the backdrop where lifelong learners can explore superheated jets of gas and dust being ejected at tremendous speeds from a pair of young, forming stars. The power of Webb turns up unexpected details in the background, like a noteworthy distant galaxy famous for its uncanny resemblance to a question mark. Each Interactive Image Tour allows people to examine unique features through videos, images, or graphical overlays to identify how those features have formed in ways that static images alone can’t convey.
These tours, which include detailed visual descriptions for each Tour Stop, illuminate the science behind the beauty, allowing learners of all ages to develop a greater understanding of and excitement for space science, deepening their engagement with astronomy, regardless of their prior experience. Check out the About the Interactives page on the ViewSpace website for a detailed overview of how to use the Image Tours.
ViewSpace currently offers three Image Tours, and the collection will continue growing:
Center of the Milky Way Galaxy:
Peer through cosmic dust and uncover areas of intense activity near the Milky Way’s core, featuring imagery from the Hubble Space Telescope, Spitzer Space Telescope, and the Chandra X-ray Observatory.
Herbig-Haro 46/47:
Witness how a tightly bound pair of young stars shapes their nebula through ejections of gas and dust in an image from the James Webb Space Telescope.
The Whirlpool Galaxy:
Explore the iconic swirling arms and glowing core of a stunning spiral galaxy, with insights into star formation, galaxy structure, and more in a Hubble Space Telescope image.
“The Image Tours are beautiful, dramatic, informational, and easy to use,” explained Sari Custer, Chief of Science and Curiosity at Arizona Science Center. “I’m excited to implement them in my museum not only because of the incredible images and user-friendly features, but also for the opportunity to excite and ignite the public’s curiosity about space.”
NASA’s Universe of Learning is supported by NASA under cooperative agreement award number NNX16AC65A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/
Select views from various Image Tours. Clockwise from top left: The Whirlpool Galaxy, Center of the Milky Way Galaxy, Herbig-Haro 46/47, detail view in the Center of the Milky Way Galaxy. Share
Details
Last Updated May 13, 2025 Editor NASA Science Editorial Team Related Terms
Science Activation Astrophysics For Educators Explore More
5 min read NASA’s Webb Reveals New Details, Mysteries in Jupiter’s Aurora
Article
1 day ago
2 min read Hubble Comes Face-to-Face with Spiral’s Arms
Article
4 days ago
7 min read NASA’s Hubble Pinpoints Roaming Massive Black Hole
Article
5 days ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
-
Similar Videos
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.