Members Can Post Anonymously On This Site
Grasshopper 325m Test | Single Camera (Hexacopter)
-
Similar Topics
-
By NASA
An aircraft body modeled after an air taxi with weighted test dummies inside is being prepared for a drop test by researchers at NASA’s Langley Research Center in Hampton, Virginia. The test was completed June 26, 2025, at Langley’s Landing and Impact Research Facility. The aircraft was dropped from a tall steel structure, known as a gantry, after being hoisted about 35 feet in the air by cables. NASA researchers are investigating aircraft materials that best absorb impact forces in a crash.NASA/Mark Knopp As the aviation industry works to design air taxis and other new electric aircraft, there’s a growing need to understand how the materials behave. That’s why NASA is investigating potential air taxi materials and designs to best protect passengers in the event of a crash.
On June 26, 2025, at NASA’s Langley Research Center in Hampton, Virginia, researchers dropped a full-scale aircraft body modeled after an air taxi from a tall steel structure, known as a gantry.
The NASA researchers behind this test and a previous one in late 2022 investigated materials that best absorb impact forces, generating data that will enable manufacturers to design safer advanced air mobility aircraft.
Image Credit: NASA/Mark Knopp
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
An aircraft body modeled after an air taxi with weighted test dummies inside is shown after a drop test at NASA’s Langley Research Center in Hampton, Virginia. The test was completed June 26 at Langley’s Landing and Impact Research Facility. The aircraft was dropped from a tall steel structure, known as a gantry, after being hoisted about 35 feet in the air by cables. NASA researchers are investigating aircraft materials that best absorb impact forces in a crash.NASA/Mark Knopp As the aviation industry works to develop new air taxis and other electric aircraft made from innovative, lightweight materials, there’s a growing need to understand how those materials behave under impact. That’s why NASA is investigating potential air taxi materials and designs that could best protect passengers in the event of a crash.
On June 26 at NASA’s Langley Research Center in Hampton, Virginia, researchers dropped a full-scale aircraft body modeled after an air taxi from a tall steel structure, known as a gantry.
The NASA researchers behind this test and a previous one in late 2022 investigated materials that best absorb impact forces, generating data that will enable manufacturers to design safer advanced air mobility aircraft.
“By showcasing elements of a crash alongside how added energy-absorbing technology could help make the aircraft more robust, these tests will help the development of safety regulations for advanced air mobility aircraft, leading to safer designs,” said Justin Littell, test lead, based at Langley.
An aircraft body modeled after an air taxi with weighted test dummies inside is hoisted about 35 feet in the air by cables at NASA’s Langley Research Center in Hampton, Virginia. The aircraft was dropped from a tall steel structure, known as a gantry, on June 26 at Langley’s Landing and Impact Research Facility. NASA researchers are investigating aircraft materials that best absorb impact forces in a crash.NASA/Mark Knopp During the June test, the aircraft was hoisted about 35 feet into the air and then released. It swung forward before crashing to the ground. The impact conditions were like the prior test in 2022, but with the addition of a 10-degree yaw, or twist, to the aircraft’s path. The yaw replicated a certification condition required by Federal Aviation Administration regulations for these kinds of aircraft.
After the drop, researchers began to evaluate how the structure and batteries withstood the impact. As expected, the material failures closely matched predictions from computer simulations, which were updated using data from the 2022 tests.
An aircraft body modeled after an air taxi with weighted test dummies inside is being prepared for a drop test by researchers at NASA’s Langley Research Center in Hampton, Virginia. The test was completed June 26 at Langley’s Landing and Impact Research Facility. The aircraft was dropped from a tall steel structure, known as a gantry, after being hoisted about 35 feet in the air by cables. NASA researchers are investigating aircraft materials that best absorb impact forces in a crash.NASA/Mark Knopp An aircraft body modeled after an air taxi with weighted test dummies inside is being prepared for a drop test by researchers at NASA’s Langley Research Center in Hampton, Virginia. The test was completed June 26 at Langley’s Landing and Impact Research Facility. The aircraft was dropped from a tall steel structure, known as a gantry, after being hoisted about 35 feet in the air by cables. NASA researchers are investigating aircraft materials that best absorb impact forces in a crash.
The aircraft included energy absorbing subfloors, similar to crumple zones in cars, which appeared to crush as intended to help protect the seats inside. The battery experiment involved adding mass to simulate underfloor battery components of air taxis to collect acceleration levels. Once analyzed, the team will share the data and insights with the public to enhance further research and development in this area.
Lessons learned from these tests will help the advanced air mobility industry evaluate the crashworthiness of aircraft designs before flying over communities.
The work is managed by the Revolutionary Vertical Lift Technology project under NASA’s Advanced Air Vehicles Program in support of NASA’s Advanced Air Mobility mission, which seeks to deliver data to guide the industry’s development of electric air taxis and drones.
Share
Details
Last Updated Jul 28, 2025 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.govLocationArmstrong Flight Research Center Related Terms
Armstrong Flight Research Center Advanced Air Mobility Advanced Air Vehicles Program Aeronautics Ames Research Center Drones & You Glenn Research Center Langley Research Center Revolutionary Vertical Lift Technology Explore More
3 min read NASA Rehearses How to Measure X-59’s Noise Levels
Article 3 days ago 4 min read NASA Scientist Finds Predicted Companion Star to Betelgeuse
Article 5 days ago 4 min read NASA Tests 5G-Based Aviation Network to Boost Air Taxi Connectivity
Article 5 days ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The north polar region of Jupiter’s volcanic moon Io was captured by the JunoCam imager aboard NASA’s Juno during the spacecraft’s 57th close pass of the gas giant on Dec. 30, 2023. A technique called annealing was used to help repair radiation damage to the camera in time to capture this image. Image data: NASA/JPL-Caltech/SwRI/MSSS Image processing by Gerald Eichstädt An experimental technique rescued a camera aboard the agency’s Juno spacecraft, offering lessons that will benefit other space systems that experience high radiation.
The mission team of NASA’s Jupiter-orbiting Juno spacecraft executed a deep-space move in December 2023 to repair its JunoCam imager to capture photos of the Jovian moon Io. Results from the long-distance save were presented during a technical session on July 16 at the Institute of Electrical and Electronics Engineers Nuclear & Space Radiation Effects Conference in Nashville.
JunoCam is a color, visible-light camera. The optical unit for the camera is located outside a titanium-walled radiation vault, which protects sensitive electronic components for many of Juno’s engineering and science instruments.
This is a challenging location because Juno’s travels carry it through the most intense planetary radiation fields in the solar system. While mission designers were confident JunoCam could operate through the first eight orbits of Jupiter, no one knew how long the instrument would last after that.
Throughout Juno’s first 34 orbits (its prime mission), JunoCam operated normally, returning images the team routinely incorporated into the mission’s science papers. Then, during its 47th orbit, the imager began showing hints of radiation damage. By orbit 56, nearly all the images were corrupted.
The graininess and horizontal lines seen in this JunoCam image show evidence that the camera aboard NASA’s Juno mission suffered radiation damage. The image, which captures one of the circumpolar cyclones on Jupiter’s north pole, was taken Nov. 22, 2023. NASA/JPL-Caltech/SwRI/MSSS Long Distance Microscopic Repair
While the team knew the issue may be tied to radiation, pinpointing what, specifically, was damaged within JunoCam was difficult from hundreds of millions of miles away. Clues pointed to a damaged voltage regulator that is vital to JunoCam’s power supply. With few options for recovery, the team turned to a process called annealing, where a material is heated for a specified period before slowly cooling. Although the process is not well understood, the idea is that the heating can reduce defects in the material.
“We knew annealing can sometimes alter a material like silicon at a microscopic level but didn’t know if this would fix the damage,” said JunoCam imaging engineer Jacob Schaffner of Malin Space Science Systems in San Diego, which designed and developed JunoCam and is part of the team that operates it. “We commanded JunoCam’s one heater to raise the camera’s temperature to 77 degrees Fahrenheit — much warmer than typical for JunoCam — and waited with bated breath to see the results.”
Soon after the annealing process finished, JunoCam began cranking out crisp images for the next several orbits. But Juno was flying deeper and deeper into the heart of Jupiter’s radiation fields with each pass. By orbit 55, the imagery had again begun showing problems.
“After orbit 55, our images were full of streaks and noise,” said JunoCam instrument lead Michael Ravine of Malin Space Science Systems. “We tried different schemes for processing the images to improve the quality, but nothing worked. With the close encounter of Io bearing down on us in a few weeks, it was Hail Mary time: The only thing left we hadn’t tried was to crank JunoCam’s heater all the way up and see if more extreme annealing would save us.”
Test images sent back to Earth during the annealing showed little improvement the first week. Then, with the close approach of Io only days away, the images began to improve dramatically. By the time Juno came within 930 miles (1,500 kilometers) of the volcanic moon’s surface on Dec. 30, 2023, the images were almost as good as the day the camera launched, capturing detailed views of Io’s north polar region that revealed mountain blocks covered in sulfur dioxide frosts rising sharply from the plains and previously uncharted volcanos with extensive flow fields of lava.
Testing Limits
To date, the solar-powered spacecraft has orbited Jupiter 74 times. Recently, the image noise returned during Juno’s 74th orbit.
Since first experimenting with JunoCam, the Juno team has applied derivations of this annealing technique on several Juno instruments and engineering subsystems.
“Juno is teaching us how to create and maintain spacecraft tolerant to radiation, providing insights that will benefit satellites in orbit around Earth,” said Scott Bolton, Juno’s principal investigator from the Southwest Research Institute in San Antonio. “I expect the lessons learned from Juno will be applicable to both defense and commercial satellites as well as other NASA missions.”
More About Juno
NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. The Italian Space Agency, Agenzia Spaziale Italiana, funded the Jovian InfraRed Auroral Mapper. Lockheed Martin Space in Denver built and operates the spacecraft. Various other institutions around the U.S. provided several of the other scientific instruments on Juno.
More information about Juno is at:
https://www.nasa.gov/juno
News Media Contact
DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Deb Schmid
Southwest Research Institute, San Antonio
210-522-2254
dschmid@swri.org
2025-091
Share
Details
Last Updated Jul 21, 2025 Related Terms
Juno Jet Propulsion Laboratory Jupiter Jupiter Moons Explore More
6 min read 5 Things to Know About Powerful New U.S.-India Satellite, NISAR
Article 2 hours ago 6 min read Meet Mineral Mappers Flying NASA Tech Out West
Article 2 weeks ago 3 min read NASA Aircraft, Sensor Technology, Aid in Texas Flood Recovery Efforts
Article 2 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
The The Stratospheric Projectile Entry Experiment on Dynamics (SPEED), a two-stage stratospheric drop test architecture, is currently under development to bridge the state-of-the-art gap that many NASA flagship missions require to reduce system risk and enable more optimized designs via margin reduction. To do this, a two-stage vehicle will drop from a high-altitude balloon and use the first stage (an LV-Haack cone aeroshell) to accelerate the sub-scale test model to supersonic conditions. The onboard avionics will then release the test model into freestream flow at the proper altitude in Earth’s atmosphere for dynamic Mach scaling to the full-scale flight trajectory. SPEED leverages low-cost methods of manufacturing such as 3D printing and laser/water-jet cutting to enable 8 or more two-stage vehicles to be dropped in a single test, making the science-to-dollar density much higher than any current ground-test facility NASA has at its disposal. The goal is to develop a robust ejection system that can reliably introduce the test models into supersonic flow with a tight variance on initial condition perturbation. The separation system must be capable of handling a range of initial angle-of-attacks, keep the test model secure in the first stage during take-off and descent, and eject the test model in such a way that it does not linger behind the first stage and be affected by the resulting wake. As current ejection system designs are conceptual, complex, and untested, NASA is looking for alternative ideas that can be incorporated into the design of their next iteration of SPEED flight vehicles to increase system reliability. We are challenging the public to design innovative concepts for a separation mechanism that can be used to assess NASA and commercial reentry vehicle stability.
Award: $7,000 in total prizes
Open Date: July 14, 2025
Close Date: September 8, 2025
For more information, visit: https://grabcad.com/challenges/ejection-mechanism-design-for-the-speed-test-architecture
View the full article
-
By NASA
Japan Aerospace Exploration Agency (JAXA) Researchers from NASA and the Japanese Aerospace Exploration Agency (JAXA) recently tested a scale model of the X-59 experimental aircraft in a supersonic wind tunnel located in Chofu, Japan, to assess the noise audible underneath the aircraft. The model can be seen in the wind tunnel in this image released on July 11, 2025.
The test was an important milestone for NASA’s one-of-a-kind X-59, which is designed to fly faster than the speed of sound without causing a loud sonic boom. When the X-59 flies, sound underneath it – a result of its pressure signature – will be a critical factor for what people hear on the ground.
This marked the third round of wind tunnel tests for the X-59 model, following a previous test at JAXA and at NASA’s Glenn Research Center in Cleveland. The data will help researchers understand the noise level that will be created by the shock waves the X-59 produces at supersonic speeds.
Image credit: JAXA
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.