Jump to content

Hubble Finds that Betelgeuse's Mysterious Dimming Is Due to a Traumatic Outburst


Recommended Posts

Posted
low_STScI-H-p2044a-k-1340x520.png

The aging, bright-red supergiant star Betelgeuse has captivated sky watchers since antiquity. The ancient astronomer Ptolemy was one of the first to note the monster star's red color. It is one of the brightest stars in the night sky and appears even more luminous because it is so close to Earth, only 725 light-years away.

But the star also periodically changes in brightness, which was first noted in the 1830s by British astronomer John Herschel. Astronomers now know that the star expands and contracts, brightening and dimming, on a 420-day cycle.

However, in October 2019, the star dimmed dramatically and continued to become even fainter. By mid-February 2020, the monster star had lost more than two-thirds of its brilliance.

This sudden dimming has mystified astronomers, who scrambled to develop several theories for the abrupt change. Ultraviolet observations by the Hubble Space Telescope suggest that the unexpected dimming was probably caused by an immense amount of superhot material ejected into space. The material cooled and formed a dust cloud that blocked the starlight coming from about a quarter of Betelgeuse's surface.

Hubble captured signs of dense, heated material moving through the star's atmosphere in September, October, and November 2019. Then, in December, several ground-based telescopes observed the star decreasing in brightness in its southern hemisphere.

The giant star is destined to end its life in a supernova blast. Some astronomers think the sudden dimming may be a pre-supernova event. Betelgeuse resides in Orion, one of the most recognizable constellations in the sky. The mammoth star marks the right shoulder of the hunter.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      The Curiosity rover continues to capture fascinating anomalies on the Martian surface. In this instance, researcher Jean Ward has examined a particularly intriguing discovery: a disc-shaped object embedded in the side of a mound or hill. 
      The images were taken by the Curiosity rover’s Mast Camera (Mastcam) on April 30, 2025 (Sol 4526). To improve clarity, Ward meticulously removed the grid overlay from the photographs, enhancing the visibility of the object. 
      To provide better spatial context for the disc’s location, Ward assembled two of the images into a collage. In the composite, you can see the surrounding area including a ridge, and the small mound where the disc appears partially embedded, possibly near the entrance of an opening. 

      The next image offers the clearest view of the anomaly. Ward again removed the grid overlay and subtly enhanced the contrast to bring out finer details, as the original image appeared overly bright and washed out. 
      In the close-up, displayed at twice the original scale, the smooth arc of the disc is distinctly visible. Its texture seems unusual, resembling stone or a slab-like material, flat yet with a defined curvature. 

      Might this disc-like structure have been engineered as a gateway, part of a hidden entrance leading to an architectural complex embedded within the hillside, hinting at a long-forgotten subterranean stronghold once inhabited by an extraterrestrial civilization? 
      Links original NASA images: https://mars.nasa.gov/raw_images/1461337/ https://mars.nasa.gov/raw_images/1461336/https://mars.nasa.gov/raw_images/1461335/
        View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
      Hubble Images a Peculiar Spiral
      This NASA/ESA Hubble Space Telescope image features a peculiar spiral galaxy called Arp 184 or NGC 1961. ESA/Hubble & NASA, J. Dalcanton, R. J. Foley (UC Santa Cruz), C. Kilpatrick A beautiful but skewed spiral galaxy dazzles in this NASA/ESA Hubble Space Telescope image. The galaxy, called Arp 184 or NGC 1961, sits about 190 million light-years away from Earth in the constellation Camelopardalis (The Giraffe).
      The name Arp 184 comes from the Atlas of Peculiar Galaxies compiled by astronomer Halton Arp in 1966. It holds 338 galaxies that are oddly shaped and tend to be neither entirely elliptical nor entirely spiral-shaped. Many of the galaxies are in the process of interacting with other galaxies, while others are dwarf galaxies without well-defined structures. Arp 184 earned its spot in the catalog thanks to its single broad, star-speckled spiral arm that appears to stretch toward us. The galaxy’s far side sports a few wisps of gas and stars, but it lacks a similarly impressive spiral arm.
      This Hubble image combines data from three Snapshot observing programs, which are short observations that slotted into time gaps between other proposals. One of the three programs targeted Arp 184 for its peculiar appearance. This program surveyed galaxies listed in the Atlas of Peculiar Galaxies as well as A Catalogue of Southern Peculiar Galaxies and Associations, a similar catalog compiled by Halton Arp and Barry Madore.
      The remaining two Snapshot programs looked at the aftermath of fleeting astronomical events like supernovae and tidal disruption events — like when a supermassive black hole rips a star apart after it wanders too closely. Since Arp 184 hosted four known supernovae in the past three decades, it is a rich target for a supernova hunt.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated May 01, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Galaxies



      Tracing the Growth of Galaxies



      Reshaping Our Cosmic View: Hubble Science Highlights


      View the full article
    • By NASA
      ESA/Hubble & NASA, L. C. Ho, D. Thilker Today’s rather aquatic-themed NASA/ESA Hubble Space Telescope image features the spiral galaxy Messier 77, also known as the Squid Galaxy, which sits 45 million light-years away in the constellation Cetus (The Whale).
      The designation Messier 77 comes from the galaxy’s place in the famous catalog compiled by the French astronomer Charles Messier. Another French astronomer, Pierre Méchain, discovered the galaxy in 1780. Both Messier and Méchain were comet hunters who cataloged nebulous objects that could be mistaken for comets.
      Messier, Méchain, and other astronomers of their time mistook the Squid Galaxy for either a spiral nebula or a star cluster. This mischaracterization isn’t surprising. More than a century would pass between the discovery of the Squid Galaxy and the realization that the ‘spiral nebulae’ scattered across the sky were not part of our galaxy but were in fact separate galaxies millions of light-years away. The Squid Galaxy’s appearance through a small telescope — an intensely bright center surrounded by a fuzzy cloud — closely resembles one or more stars wreathed in a nebula.
      The name ‘Squid Galaxy’ is recent, and stems from the extended, filamentary structure that curls around the galaxy’s disk like the tentacles of a squid. The Squid Galaxy is a great example of how advances in technology and scientific understanding can completely change our perception of an astronomical object — and even what we call it!
      Hubble previously released an image of M77 in 2013. This new image incorporates recent observations made with different filters and updated image processing techniques which allow astronomers to see the galaxy in more detail.
      View the full article
    • By NASA
      This NASA/ESA Hubble Space Telescope image features the globular cluster Messier 72 (M72).ESA/Hubble & NASA, A. Sarajedini, G. Piotto, M. Libralato As part of ESA/Hubble’s 35th anniversary celebrations, the European Space Agency (ESA) shared new images that revisited stunning, previously released Hubble targets with the addition of the latest Hubble data and new processing techniques.
      ESA/Hubble released new images of NGC 346, the Sombrero Galaxy, and the Eagle Nebula earlier in the month. Now they are revisiting the star cluster Messier 72 (M72).
      M72 is a collection of stars, formally known as a globular cluster, located in the constellation Aquarius roughly 50,000 light-years from Earth. The intense gravitational attraction between the closely packed stars gives globular clusters their regular, spherical shape. There are roughly 150 known globular clusters associated with the Milky Way galaxy.
      The striking variety in the color of the stars in this image of M72, particularly compared to the original image, results from the addition of ultraviolet observations to the previous visible-light data. The colors indicate groups of different types of stars. Here, blue stars are those that were originally more massive and have reached hotter temperatures after burning through much of their hydrogen fuel; the bright red objects are lower-mass stars that have become red giants. Studying these different groups help astronomers understand how globular clusters, and the galaxies they were born in, initially formed.
      Pierre Méchain, a French astronomer and colleague of Charles Messier, discovered M72 in 1780. It was the first of five star clusters that Méchain would discover while assisting Messier. They recorded the cluster as the 72nd entry in Messier’s famous collection of astronomical objects. It is also one of the most remote clusters in the catalog.
      View the full article
    • By European Space Agency
      The Atomic Clock Ensemble in Space (ACES), ESA’s state-of-the-art timekeeping facility, has been successfully installed on the International Space Station, marking the start of a new chapter in space-based precision science. 
      View the full article
  • Similar Videos

  • Check out these Videos

×
×
  • Create New...