Jump to content

31st October - NASA / ISS LIVE Stream 2 - Views & Audio From The International Space Station


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      LIVE : Sun Live stream - close up Video Of The Sun / Lunt Telescope - Backyard Astronomy
    • By NASA
      Credit: NASA NASA’s on-demand streaming service, NASA+, launched a FAST (Free Ad-Supported Television) channel on Prime Video Tuesday, giving viewers another way to watch the agency’s aeronautics, human spaceflight, science, and technology missions unfold on screen.
      As the agency continues to improve life on Earth and inspire new generations through innovation, exploration, and discovery, NASA+ is dedicated to sharing stories through live launch coverage, original documentaries, family-friendly content, and more.
      “Streaming NASA+ on multiple platforms allows the agency to more efficiently share its missions, from launching astronauts to the International Space Station, to going behind the scenes with the team that defends Earth against asteroids, to showcasing new, high-definition images of the cosmos,” said Wes Brown, acting associate administrator for the Office of Communications at NASA Headquarters in Washington. “NASA provides an up-close look at how the agency explores the secrets of the universe for the benefit of all by ensuring content is easily accessible and widely available to the public.”
      In addition to the FAST channel, NASA+ is available to download without a subscription on most major platforms via the NASA App on iOS and Android mobile and tablet devices, as well as streaming media players like Roku, Apple TV, and Fire TV. Users also may stream online at:
      https://plus.nasa.gov
      -end-
      Jennifer Dooren / Jessica Taveau
      Headquarters, Washington
      202-358-1600
      jennifer.m.dooren@nasa.gov / jessica.c.taveau@nasa.gov
      Share
      Details
      Last Updated May 06, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      NASA+ View the full article
    • By NASA
      5 min read
      NASA’s NICER Maps Debris From Recurring Cosmic Crashes
      Lee esta nota de prensa en español aquí.
      For the first time, astronomers have probed the physical environment of repeating X-ray outbursts near monster black holes thanks to data from NASA’s NICER (Neutron star Interior Composition Explorer) and other missions.
      Scientists have only recently encountered this class of X-ray flares, called QPEs, or quasi-periodic eruptions. A system astronomers have nicknamed Ansky is the eighth QPE source discovered, and it produces the most energetic outbursts seen to date. Ansky also sets records in terms of timing and duration, with eruptions every 4.5 days or so that last approximately 1.5 days.
      “These QPEs are mysterious and intensely interesting phenomena,” said Joheen Chakraborty, a graduate student at the Massachusetts Institute of Technology in Cambridge. “One of the most intriguing aspects is their quasi-periodic nature. We’re still developing the methodologies and frameworks we need to understand what causes QPEs, and Ansky’s unusual properties are helping us improve those tools.”
      Watch how astronomers used data from NASA’s NICER (Neutron star Interior Composition Explorer) to study a mysterious cosmic phenomenon called a quasi-periodic eruption, or QPE.
      NASA’s Goddard Space Flight Center Ansky’s name comes from ZTF19acnskyy, the moniker of a visible-light outburst seen in 2019. It was located in a galaxy about 300 million light-years away in the constellation Virgo. This event was the first indication that something unusual might be happening.
      A paper about Ansky, led by Chakraborty, was published Tuesday in The Astrophysical Journal.
      A leading theory suggests that QPEs occur in systems where a relatively low-mass object passes through the disk of gas surrounding a supermassive black hole that holds hundreds of thousands to billions of times the Sun’s mass.
      When the lower-mass object punches through the disk, its passage drives out expanding clouds of hot gas that we observe as QPEs in X-rays.
      Scientists think the eruptions’ quasi-periodicity occurs because the smaller object’s orbit is not perfectly circular and spirals toward the black hole over time. Also, the extreme gravity close to the black hole warps the fabric of space-time, altering the object’s orbits so they don’t close on themselves with each cycle. Scientists’ current understanding suggests the eruptions repeat until the disk disappears or the orbiting object disintegrates, which may take up to a few years.
      A system astronomers call Ansky, in the galaxy at the center of this image, is home to a recently discovered series of quasi-periodic eruptions. Sloan Digital Sky Survey “Ansky’s extreme properties may be due to the nature of the disk around its supermassive black hole,” said Lorena Hernández-García, an astrophysicist at the Millennium Nucleus on Transversal Research and Technology to Explore Supermassive Black Holes, the Millennium Institute of Astrophysics, and University of Valparaíso in Chile. “In most QPE systems the supermassive black hole likely shreds a passing star, creating a small disk very close to itself. In Ansky’s case, we think the disk is much larger and can involve objects farther away, creating the longer timescales we observe.”
      Hernández-García, in addition to being a co-author on Chakraborty’s paper, led the study that discovered Ansky’s QPEs, which was published in April in Nature Astronomy and used data from NICER, NASA’s Neil Gehrels Swift Observatory and Chandra X-ray Observatory, as well as ESA’s (European Space Agency’s) XMM-Newton space telescope.
      NICER’s position on the International Space Station allowed it to observe Ansky about 16 times every day from May to July 2024. The frequency of the observations was critical in detecting the X-ray fluctuations that revealed Ansky produces QPEs.
      Chakraborty’s team used data from NICER and XMM-Newton to map the rapid evolution of the ejected material driving the observed QPEs in unprecedented detail by studying variations in X-ray intensity during the rise and fall of each eruption.
      The researchers found that each impact resulted in about a Jupiter’s worth of mass reaching expansion velocities around 15% of the speed of light.
      The NICER (Neutron star Interior Composition Explorer) X-ray telescope is reflected on NASA astronaut and Expedition 72 flight engineer Nick Hague’s spacesuit helmet visor in this high-flying “space-selfie” taken during a spacewalk on Jan. 16, 2025. NASA/Nick Hague The NICER telescope’s ability to frequently observe Ansky from the space station and its unique measurement capabilities also made it possible for the team to measure the size and temperature of the roughly spherical bubble of debris as it expanded.
      “All NICER’s Ansky observations used in these papers were collected after the instrument experienced a ‘light leak’ in May 2023,” said Zaven Arzoumanian, the mission’s science lead at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Even though the leak – which was patched in January – affected the telescope’s observing strategy, NICER was still able to make vital contributions to time domain astronomy, or the study of changes in the cosmos on timescales we can see.”
      After the repair, NICER continued observing Ansky to explore how the outbursts have evolved over time. A paper about these results, led by Hernández-García and co-authored by Chakraborty, is under review.
      Observational studies of QPEs like Chakraborty’s will also play a key role in preparing the science community for a new era of multimessenger astronomy, which combines measurements using light, elementary particles, and space-time ripples called gravitational waves to better understand objects and events in the universe.
      One goal of ESA’s future LISA (Laser Interferometer Space Antenna) mission, in which NASA is a partner, is to study extreme mass-ratio inspirals — or systems where a low-mass object orbits a much more massive one, like Ansky. These systems should emit gravitational waves that are not observable with current facilities. Electromagnetic studies of QPEs will help improve models of those systems ahead of LISA’s anticipated launch in the mid-2030s.
      “We’re going to keep observing Ansky for as long as we can,” Chakraborty said. “We’re still in the infancy of understanding QPEs. It’s such an exciting time because there’s so much to learn.”

      Download images and videos through NASA’s Scientific Visualization Studio.

      By Jeanette Kazmierczak
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Claire Andreoli
      301-286-1940
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share








      Details
      Last Updated May 06, 2025 Editor Jeanette Kazmierczak Location Goddard Space Flight Center Related Terms
      The Universe Astrophysics Black Holes Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research International Space Station (ISS) ISS Research NICER (Neutron star Interior Composition Explorer) Science & Research Supermassive Black Holes X-ray Astronomy View the full article
    • By NASA
      4 Min Read NASA Expands SPHEREx Science Return Through Commercial Partnership
      A sectional rendering of NASA's SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer). Credits: NASA NASA is partnering with commercial industry to expand our knowledge of Earth, our solar system, and beyond. Recently, NASA collaborated with Kongsberg Satellite Services (KSAT) to support data transfer for the agency’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) mission to explore the origins of the universe. 
      “Not only is NASA moving toward commercialization, the agency is making technological advancements to existing systems and saving millions of dollars in the process — all while expanding human knowledge through science and exploration missions,” said Kevin Coggins, associate administrator for NASA’s SCaN (Space Communications and Navigation) program.
      To receive data from missions in space, NASA relies on the Near Space Network and Deep Space Network, a collection of antennas around the globe.
      In preparation for the recently-launched SPHEREx observatory, NASA needed to upgrade an antenna on the world’s most remote continent: Antarctica.
      Transmitted via NASA’s Near Space Network, this video shows SPHEREx scanning a region of the Large Magellanic Cloud. The shifting colors represent different infrared wavelengths detected by the telescope’s two arrays. Credit: NASA/JPL-Caltech NASA’s SCaN program took a novel approach by leveraging its established commercial partnership with KSAT. While upgraded KSAT antennas were added to the Near Space Network in 2023, SPHEREx required an additional Antarctic antenna that could link to online data storage.
      To support SPHEREx’s polar orbit, KSAT upgraded its Troll, Antarctica antenna and incorporated their own cloud storage system. NASA then connected KSAT’s cloud to the NASA cloud, DAPHNE+ (Data Acquisition Process and Handling Environment).
      As the Near Space Network’s operational cloud services system, DAPHNE+ enables science missions to transmit their data to the network for virtual file storage, processing, and management. 
      “By connecting the Troll antenna to DAPHNE+, we eliminated the need for large, undersea fiberoptic cables by virtually connecting private and government-owned cloud systems, reducing the project’s cost and complexity,” said Matt Vincent, the SPHEREx mission manager for the Near Space Network at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      Each day, SPHEREx downlinks a portion of its 20 gigabits of science data through the Troll antenna, which transfers the files across KSAT’s network of relay satellites to the DAPHNE+ cloud. The cloud system combines and centralizes the data from each antenna, allowing access to all of SPHEREx’s health and science data in one convenient place. 
      The SPHEREx mission data is transmitted from space to the Troll Satellite Station, relayed through a network of satellites, and stored in the Near Space Network’s cloud system for easily-accessible analysis by scientists around the world.NASA/Dave Ryan With coverage throughout its orbit, SPHEREx transmits its 3D maps of the celestial sky, offering new insight into what happened a fraction of a second after the big bang. 
      “Missions like SPHEREx use the Near Space Network’s combination of commercial and government antennas,” explained Michael Skube, DAPHNE+ manager at NASA Goddard. “And that is the benefit of DAPHNE+ — it enables the network to pull different sources of information into one central location. The DAPHNE+ system treats government and commercial antennas as part of the same network.” 
      The partnership is mutually beneficial. NASA’s Near Space Network maintains a data connection with SPHEREx as it traverses both poles and KSAT benefits from its antennas’ integration into a robust global network – no new cables required. 
       “We were able to find a networking solution with KSAT that did not require us to put additional hardware in Antarctica,” said Vincent. “Now we are operating with the highest data rate we have ever downlinked from that location.” 
      The upgraded ground station antenna at Troll Satellite Station supports cloud-based space communications, enabling NASA’s Near Space Network to support scientific missions via a wireless cloud network.Kongsberg Satellite Services For NASA, its commercial partners, and other global space agencies, this expansion means more reliable space communications with fewer expenses. 
      Troll’s successful integration into the Near Space Network is a case study for future private and government partnerships. As SPHEREx measures the collective glow of over 450 million galaxies as far as 10 billion light-years away, SCaN continues to innovate how its discoveries safely return to Earth. 
      The SPHEREx mission is managed by NASA’s Jet Propulsion Laboratory in Southern California for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. Data will be processed and archived at IPAC at Caltech. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive. Funding and oversight for DAPHNE+ and the Near Space Network come from the SCaN program office at NASA Headquarters and operate out of NASA’s Goddard Space Flight Center. The Troll Satellite Station is owned and operated by Kongsberg Satellite Services and located in Queen Maud Land, Antarctica. 
      About the Author
      Korine Powers
      Lead Writer and Communications StrategistKorine Powers, Ph.D. is a writer for NASA's Space Communications and Navigation (SCaN) program office and covers emerging technologies, commercialization efforts, exploration activities, and more.
      Share
      Details
      Last Updated May 06, 2025 Related Terms
      Communicating and Navigating with Missions Commercial Space Space Communications & Navigation Program SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) View the full article
    • By NASA
      6 min read
      Quantum Sensing via Matter-Wave Interferometry Aboard the International Space Station
      Future space missions could use quantum technologies to help us understand the physical laws that govern the universe, explore the composition of other planets and their moons, gain insights into unexplained cosmological phenomena, or monitor ice sheet thickness and the amount of water in underground aquafers on Earth.
      Upgraded hardware being prepared at Jet Propulsion Lab for launch and install into the Cold Atom Lab on the International Space Station. The Science Module in the background enables CAL researchers to conduct atom interferometry research in Earth’s orbit. Credit: NASA/JPL-Caltech NASA’s Cold Atom Lab (CAL), a first-of-its-kind facility aboard the International Space Station, has performed a series of trailblazing experiments based on the quantum properties of ultracold atoms. The tool used to perform these experiments is called an atom interferometer, and it can precisely measure gravity, magnetic fields, and other forces.
      Atom interferometers are currently being used on Earth to study the fundamental nature of gravity and are also being developed to aid aircraft and ship navigation, but use of an atom interferometer in space will enable innovative science capabilities.
      Physicists have been eager to apply atom interferometry in space, both to enable new measurements for space science and to capitalize on the extended free-fall conditions found in space. This could enable researchers to achieve unprecedented performance from these quantum sensors.
      These interferometers, however, require exquisitely sensitive equipment, and they were previously considered too fragile to function for extended periods without hands-on attention. The Cold Atom Lab, which is operated remotely from Earth, has now demonstrated that it is possible to conduct atom interferometry in space. The CAL Science Team has published two papers so far documenting these experimental milestones.
      Depiction of the atom interferometer (AI) setup onboard the ISS in CAL (on the right), showing the interior components of the instrument, and the path of a retro-reflected laser beam (red) inside the vacuum system. The expanded image on the left shows the beam entering the vacuum chamber through a window and between pairs of traces on the atom chip, which are used to confine and cool the atoms to ultracold temperatures. Credit: NASA/JPL-Caltech The results of the first study, published in the November 2023 issue of Nature, described the demonstration of simultaneous atom interferometry with both rubidium and potassium quantum gases for the first time in space. The dual-species atom interferometer not only exhibited robust and repeatable operation of atom interferometry in Earth orbit, but it also served as a pathfinder for future experiments that aim to use quantum gases to test the universality of free fall, a key tenet of Einstein’s theory of general relativity.
      In the second study, the results of which were featured in the August 2024 issue of Nature Communications, members of the science team used the CAL atom interferometer to measure subtle vibrations of the space station and to remotely measure the frequency of the atom interferometer laser— the first time ultra-cold atoms have been used to detect changes in the surrounding environment in space. This paper also reported on the demonstration of the wave-like nature of matter persisting for the longest ever freefall time (over a tenth of a second) in space.
      “Reaching these milestones was incredibly challenging, and our success was not always a given,” said Jason Williams, the Cold Atom Lab project scientist at NASA’s Jet Propulsion Laboratory in Southern California. “It took dedication and a sense of adventure by the team to make this happen.”
      Space-based sensors that can measure gravity with high precision have a wide range of potential applications. They could reveal the composition of planets and moons in our solar system, because different materials have different densities that create subtle variations in gravity.
      The U.S.-German GRACE-FO (Gravity Recovery and Climate Experiment Follow-on) mission is currently collecting gravity measurements using classical sensors that detect slight changes in gravity to track the movement of water and ice on Earth. A future mission using atom interferometry could provide better precision and stability, revealing even more detail about surface mass changes.
      Precise measurements of gravity could also offer insights into the nature of dark matter and dark energy, two major cosmological mysteries. Dark matter is an invisible substance that makes up about 27% of the universe, while the “regular” matter that composes planets, stars, and everything else we can see makes up only 5%. Dark energy makes up the remaining 68% of the universe and is the driver of the universe’s accelerating expansion.
      “Atom interferometry could also be used to test Einstein’s theory of general relativity in new ways,” said University of Virginia professor Cass Sackett, a Cold Atom Lab principal investigator. “This is the basic theory explaining the large-scale structure of our universe, and we know that there are aspects of the theory that we don’t understand correctly. This technology may help us fill in those gaps and give us a more complete picture of the reality we inhabit.”
      About the size of a minifridge, the Cold Atom Lab launched to the space station in 2018 with the goal of advancing quantum science by placing a long-term facility in the microgravity environment of low Earth orbit. The lab cools atoms to almost absolute zero, or minus 459 degrees Fahrenheit (minus 273 degrees Celsius). At this temperature, some atoms can form a Bose-Einstein condensate, a state of matter in which all atoms essentially share the same quantum identity. As a result, some of the atoms’ typically microscopic quantum properties become macroscopic, making them easier to study.
      Quantum properties can sometimes cause atoms to act like solid objects and sometimes like waves. Scientists don’t yet entirely understand how the building blocks of matter can transition between such different physical behaviors, but they’re using quantum technology like what’s available on the Cold Atom Lab to seek answers.
      In microgravity, Bose-Einstein condensates can reach colder temperatures and can exist for longer, giving scientists more opportunities to study them. The atom interferometer is among several tools in the CAL facility enabling precision measurements by harnessing the quantum nature of atoms.
      Dual-species atom interferometry in space. (Left) Normalized population for ultracold gases of potassium (blue) and rubidium (red) in one of two output states following a simultaneous dual-species atom interferometry sequence. (Right) Correlations observed in the relative population of potassium and rubidium output states. Credit: NASA/JPL-Caltech Due to its wave-like behavior, a single atom can simultaneously travel two physically separate paths. If gravity or other forces are acting on those waves, scientists can measure that influence by observing how the waves recombine and interact.
      “I expect that space-based atom interferometry will lead to exciting new discoveries, fantastic quantum technologies impacting everyday life, and will transport us into a quantum future,” said Nick Bigelow, a professor at University of Rochester in New York and Cold Atom Lab principal investigator for a consortium of U.S. and German scientists who co-authored the studies cited above.
      Designed and built at the NASA Jet Propulsion Laboratory, Cold Atom Lab is sponsored by the Biological and Physical Sciences (BPS) Division of NASA’s Science Mission Directorate at the Agency’s headquarters in Washington DC and the International Space Station Program at NASA’s Johnson Space Center in Houston, Texas. The work carried out at the Jet Propulsion Laboratory, California Institute of Technology, was executed under a contract with the National Aeronautics and Space Administration.
      Learn more about Cold Atom Lab at https://coldatomlab.jpl.nasa.gov/
      Just how cold are the atoms in Cold Atom Lab? Find out at https://www.jpl.nasa.gov/news/news.php?feature=7311
      To learn more about the Cold Atom Lab’s recent upgrades visit https://www.jpl.nasa.gov/news/upgrading-the-space-stations-cold-atom-lab-with-mixed-reality and https://www.jpl.nasa.gov/news/news.php?feature=7660
      Project Lead: Kamal Oudrhiri, Jet Propulsion Laboratory, California Institute of Technology
      Sponsoring Organization:  Biological and Physical Sciences Division (BPS)
      Share








      Details
      Last Updated May 06, 2025 Related Terms
      Technology Highlights Biological & Physical Sciences Cold Atom Laboratory (CAL) GRACE-FO (Gravity Recovery and Climate Experiment Follow-on) Science-enabling Technology View the full article
  • Check out these Videos

×
×
  • Create New...