Members Can Post Anonymously On This Site
Black Triangle UFO getting struck by lightning in Itaquaquecetuba, Brazil
-
Similar Topics
-
By USH
Three U.S. military veterans, two from the Air Force and one from the Navy, took the stand Tuesday during the third congressional hearing on Unidentified Anomalous Phenomena (UAPs), the government’s sanitized new term for UFOs.
The most shocking moment came when Congressman Eric Burlison of Missouri unveiled never before seen military footage: a U.S. drone firing a hellfire missile at a mysterious object off the coast of Yemen on October 30, 2024.
The grainy black and white video shows the 100 pound precision weapon streaking toward the target, only to ricochet off harmlessly as the object shot away at impossible speed. Just as baffling, three smaller spheres hovered in formation around the craft, undisturbed by the impact.
Reactions were mixed. Skeptics immediately dismissed the video, claiming it could be nothing more than a misidentified balloon, its apparent speed exaggerated by the drone’s telephoto lens. Others suggested the missile was part of a weapons test rather than a failed strike on something otherworldly.
But the testimony didn’t stop with the video. Two veterans alleged the government has been actively silencing witnesses, threatening those who came forward, and even blacklisting service members who refused to stay quiet. Dylan Borland, a former Air Force geospatial intelligence specialist, testified that multiple agencies conspired to destroy his career blocking jobs, forging documents, and tampering with his security clearance.
For some, this hearing represented a breakthrough in UFO transparency. For others, it was little more than political theater. As one observer put it: it looks like it is just another carefully staged distraction, the UFO spectacle might just be a smokescreen for something deeper.
View the full article
-
By USH
The first video, beginning around the 1:02 mark, was captured on a dash cam while driving eastbound on a four-lane freeway. Suddenly, a large triangular craft entered the frame, flying approximately 300 to 400 feet above the road.
Although the exact location remains unknown, the sighting is remarkable for its level of visible detail:
A blinking light with two dull orange lights in the center. A large circular feature on the underside, possibly an energy source. A distinctly aerodynamic triangular design. What appears to be an energy field or interference surrounding the craft. An estimated width of 75 to 100 feet, with no audible sound, suggesting non-conventional technology.
When viewed in slow motion, the footage stands out as one of the most striking nighttime captures to date, raising the question: is this a black-budget military project, or evidence of something extraterrestrial? Interestingly, the triangular craft bears a strong resemblance to the rumored TR-3B black manta, an alleged anti-gravity alien reproduction vehicle.
Additional almost similar sightings in Texas and Florida.
Austin, Texas: A dark craft hovering silently in the night sky, completely stationary throughout the entire recording. Sarasota, Florida: Three energy sources forming a triangular pattern while hovering in the night sky. It looks like it could be one of those triangle crafts.
Today, many aerial craft, whether human-made or not, are observed using technologies that remain beyond our current understanding.
View the full article
-
By USH
NASA’s 1991 Discovery shuttle video shows UFOs making impossible maneuvers, evading a possible Star Wars railgun test. Evidence of secret tech?
In September 1991, NASA’s Space Shuttle Discovery transmitted live video that has since become one of the most debated UFO clips ever recorded. The footage, later analyzed by independent researchers, shows glowing objects in orbit performing maneuvers far beyond the limits of known physics.
One object appears over Earth’s horizon, drifts smoothly, then suddenly reacts to a flash of light by accelerating at impossible speeds, estimated at over 200,000 mph while withstanding forces of 14,000 g’s. NASA officially dismissed the anomalies as ice particles or debris, but side by side comparisons with actual orbital ice show key differences: the objects make sharp turns, sudden accelerations, and fade in brightness in ways consistent with being hundreds of miles away, not near the shuttle.
Image analysis expert Dr. Mark Carlotto confirmed that at least one object was located about 1,700 miles from the shuttle, placing it in Earth’s atmosphere. At that distance, the object would be too large and too fast to be dismissed as ice or space junk.
The flash and two streaks seen in the video resemble the Pentagon’s “Brilliant Pebbles” concept, a railgun based missile defense system tested in the early 1990s. Researchers suggest the shuttle cameras may have accidentally, or deliberately, captured a live Star Wars weapons test in orbit.
The UFO easily evaded the attack, leading some to conclude that it was powered by a form of hyperdimensional technology capable of altering gravity.
Notably, following this 1991 incident, all subsequent NASA shuttle external camera feeds were censored or delayed, raising speculation that someone inside the agency allowed the extraordinary footage to slip out.
View the full article
-
By NASA
3 min read
Summer Triangle Corner: Altair
A map of the asterism known as the Summer Triangle. This asterism is made up of three stars: Vega in the Lyra constellation, Altair in the Aquila constellation, and Deneb in the Cygnus constellation. Stellarium Web Altair is the last stop on our trip around the Summer Triangle! The last star in the asterism to rise for Northern Hemisphere observers before summer begins, brilliant Altair is high overhead at sunset at the end of the season in September. Altair might be the most unusual of the three stars of the Triangle, due to its great speed: this star spins so rapidly that it appears “squished.”
Altair is the brightest star in the constellation of Aquila, the Eagle. A very bright star, Altair holds a notable place in the mythologies of cultures around the world. As discussed in a previous article, Altair represents the cowherd in the ancient tale “Cowherd and the Weaver Girl.” While described as part of an eagle by ancient peoples around the Mediterranean, it was also seen as part of an eagle by the Koori people in Australia. They saw the star itself as representing a wedge-tailed eagle, and two nearby stars as his wives, a pair of black swans. More recently, one of the first home computers was named after the star: the Altair 8800.
A rapidly spinning star darkens and exhibits a bulge at the equator, as shown by the model at left. At right, an actual CHARA interferometer image of the star Altair. NASA/NSF/Center for High Angular Resolution Astronomy/Zina Deretsky Altair’s rapid spinning was first detected in the 1960s. The close observations that followed tested the limits of technology available to astronomers, eventually resulting in direct images of the star’s shape and surface by using a technique called interferometry, which combines the light from two or more instruments to produce a single image. Predictions about how the surface of a rapidly spinning massive star would appear held true to the observations; models predicted a squashed, almost “pumpkin-like” shape instead of a round sphere, along with a dimming effect along the widened equator, and the observations confirmed this!
This equatorial dimming is due to a phenomenon called gravity darkening. Altair is wider at the equator than it is at the poles due to centrifugal force, resulting in the star’s mass bulging outwards at the equator. This results in the denser poles of the star being hotter and brighter, and the less dense equator being cooler and therefore dimmer. This doesn’t mean that the equator of Altair or other rapidly spinning stars are actually dark, but rather that the equator is dark in comparison to the poles; this is similar in a sense to sunspots. If you were to observe a sunspot on its own, it would appear blindingly bright, but it is cooler than the surrounding plasma in the Sun and so appears dark in contrast.
As summer winds down, you can still take a Trip Around the Summer Triangle with this activity from the Night Sky Network. Mark some of the sights in and around the Summer Triangle at: bit.ly/TriangleTrip.
Originally posted by Dave Prosper: August 2020
Last Updated by Kat Troche: July 2025
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Written by Michael Allen
An international team of astronomers using NASA’s IXPE (Imaging X-ray Polarimetry Explorer), has challenged our understanding of what happens to matter in the direct vicinity of a black hole.
With IXPE, astronomers can study incoming X-rays and measure the polarization, a property of light that describes the direction of its electric field.
The polarization degree is a measurement of how aligned those vibrations are to each other. Scientists can use a black hole’s polarization degree to determine the location of the corona – a region of extremely hot, magnetized plasma that surrounds a black hole – and how it generates X-rays.
This illustration of material swirling around a black hole highlights a particular feature, called the “corona,” that shines brightly in X-ray light. In this depiction, the corona can be seen as a purple haze floating above the underlying accretion disk, and extending slightly inside of its inner edge. The material within the inner accretion disk is incredibly hot and would glow with a blinding blue-white light, but here has been reduced in brightness to make the corona stand out with better contrast. Its purple color is purely illustrative, standing in for the X-ray glow that would not be obvious in visible light. The warp in the disk is a realistic representation of how the black hole’s immense gravity acts like an optical lens, distorting our view of the flat disk that encircles it. NASA/Caltech-IPAC/Robert Hurt In April, astronomers used IXPE to measure a 9.1% polarization degree for black hole IGR J17091-3624, much higher than they expected based on theoretical models.
“The black hole IGR J17091-3624 is an extraordinary source which dims and brightens with the likeness of a heartbeat, and NASA’s IXPE allowed us to measure this unique source in a brand-new way.” said Melissa Ewing, the lead of the study based at Newcastle University in Newcastle upon Tyne, England.
In X-ray binary systems, an extremely dense object, like a black hole, pulls matter from a nearby source, most often a neighboring star. This matter can begin to swirl around, flattening into a rotating structure known as an accretion disc.
The corona, which lies in the inner region of this accretion disc, can reach extreme temperatures up to 1.8 billion degrees Fahrenheit and radiate very luminous X-rays. These ultra-hot coronas are responsible for some of the brightest X-ray sources in the sky.
Despite how bright the corona is in IGRJ17091-364, at some 28,000 light-years from Earth, it remains far too small and distant for astronomers to capture an image of it.
“Typically, a high polarization degree corresponds with a very edge-on view of the corona. The corona would have to be perfectly shaped and viewed at just the right angle to achieve such a measurement,” said Giorgio Matt, professor at the University of Roma Tre in Italy and a co-author on this paper. “The dimming pattern has yet to be explained by scientists and could hold the keys to understanding this category of black holes.”
The stellar companion of this black hole isn’t bright enough for astronomers to directly estimate the system’s viewing angle, but the unusual changes in brightness observed by IXPE suggest that the edge of the accretion disk was directly facing Earth.
The researchers explored different avenues to explain the high polarization degree.
In one model, astronomers included a “wind” of matter lifted from the accretion disc and launched away from the system, a rarely seen phenomenon. If X-rays from the corona were to meet this matter on their way to IXPE, Compton scattering would occur, leading to these measurements.
Fast Facts
Polarization measurements from IXPE carry information about the orientation and alignment of emitted X-ray light waves. The high the degree of polarization, the more the X-ray waves are traveling in sync. Most polarization in the corona come from a process known as Compton scattering, where light from the accretion disc bounces off the hot plasma of the corona, gaining energy and aligning to vibrate in the same direction. “These winds are one of the most critical missing pieces to understand the growth of all types of black holes,” said Maxime Parra, who led the observation and works on this topic at Ehime University in Matsuyama, Japan. “Astronomers could expect future observations to yield even more surprising polarization degree measurements.”
Another model assumed the plasma in the corona could exhibit a very fast outflow. If the plasma were to be streaming outwards at speeds as high as 20% the speed of light, or roughly 124 million miles per hour, relativistic effects could boost the observed polarization.
In both cases, the simulations could recreate the observed polarization without a very specific edge-on view. Researchers will continue to model and test their predictions to better understand the high polarization degree for future research efforts.
More about IXPE
IXPE, which continues to provide unprecedented data enabling groundbreaking discoveries about celestial objects across the universe, is a joint NASA and Italian Space Agency mission with partners and science collaborators in 12 countries. IXPE is led by NASA’s Marshall Space Flight Center in Huntsville, Alabama. BAE Systems, Inc., headquartered in Falls Church, Virginia, manages spacecraft operations together with the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder.
Learn more about IXPE’s ongoing mission here:
https://www.nasa.gov/ixpe
Share
Details
Last Updated Aug 12, 2025 EditorBeth RidgewayContactCorinne Edmistoncorinne.m.edmiston@nasa.govLocationMarshall Space Flight Center Related Terms
IXPE (Imaging X-ray Polarimetry Explorer) Marshall Astrophysics Marshall Science Research & Projects Marshall Space Flight Center Explore More
6 min read NASA’s Hubble, Chandra Spot Rare Type of Black Hole Eating a Star
NASA’s Hubble Space Telescope and NASA’s Chandra X-ray Observatory have teamed up to identify a…
Article 3 weeks ago 4 min read Stay Cool: NASA Tests Innovative Technique for Super Cold Fuel Storage
Article 4 weeks ago 4 min read NASA’s IXPE Imager Reveals Mysteries of Rare Pulsar
Article 4 weeks ago Keep Exploring Discover Related Topics
Chandra
Space Telescope
IXPE News
Black Holes
Black Holes Black holes are among the most mysterious cosmic objects, much studied but not fully understood. These objects aren’t…
Imaging X-ray Polarimetry Explorer (IXPE)
The Imaging X-ray Polarimetry Explorer (IXPE) is a space observatory built to discover the secrets of some of the most…
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.