Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 Min Read NASA Marshall Fires Up Hybrid Rocket Motor to Prep for Moon Landings
      NASA’s Artemis campaign will use human landing systems, provided by SpaceX and Blue Origin, to safely transport crew to and from the surface of the Moon, in preparation for future crewed missions to Mars. As the landers touch down and lift off from the Moon, rocket exhaust plumes will affect the top layer of lunar “soil,” called regolith, on the Moon. When the lander’s engines ignite to decelerate prior to touchdown, they could create craters and instability in the area under the lander and send regolith particles flying at high speeds in various directions.
      To better understand the physics behind the interaction of exhaust from the commercial human landing systems and the Moon’s surface, engineers and scientists at NASA’s Marshall Space Flight Center in Huntsville, Alabama, recently test-fired a 14-inch hybrid rocket motor more than 30 times. The 3D-printed hybrid rocket motor, developed at Utah State University in Logan, Utah, ignites both solid fuel and a stream of gaseous oxygen to create a powerful stream of rocket exhaust.
      “Artemis builds on what we learned from the Apollo missions to the Moon. NASA still has more to learn more about how the regolith and surface will be affected when a spacecraft much larger than the Apollo lunar excursion module lands, whether it’s on the Moon for Artemis or Mars for future missions,” said Manish Mehta, Human Landing System Plume & Aero Environments discipline lead engineer. “Firing a hybrid rocket motor into a simulated lunar regolith field in a vacuum chamber hasn’t been achieved in decades. NASA will be able to take the data from the test and scale it up to correspond to flight conditions to help us better understand the physics, and anchor our data models, and ultimately make landing on the Moon safer for Artemis astronauts.”
      Fast Facts
      Over billions of years, asteroid and micrometeoroid impacts have ground up the surface of the Moon into fragments ranging from huge boulders to powder, called regolith. Regolith can be made of different minerals based on its location on the Moon. The varying mineral compositions mean regolith in certain locations could be denser and better able to support structures like landers. Of the 30 test fires performed in NASA Marshall’s Component Development Area, 28 were conducted under vacuum conditions and two were conducted under ambient pressure. The testing at Marshall ensures the motor will reliably ignite during plume-surface interaction testing in the 60-ft. vacuum sphere at NASA’s Langley Research Center in Hampton, Virginia, later this year.
      Once the testing at NASA Marshall is complete, the motor will be shipped to NASA Langley. Test teams at NASA Langley will fire the hybrid motor again but this time into simulated lunar regolith, called Black Point-1, in the 60-foot vacuum sphere. Firing the motor from various heights, engineers will measure the size and shape of craters the rocket exhaust creates as well as the speed and direction the simulated lunar regolith particles travel when the rocket motor exhaust hits them.
      “We’re bringing back the capability to characterize the effects of rocket engines interacting with the lunar surface through ground testing in a large vacuum chamber — last done in this facility for the Apollo and Viking programs. The landers going to the Moon through Artemis are much larger and more powerful, so we need new data to understand the complex physics of landing and ascent,” said Ashley Korzun, principal investigator for the plume-surface interaction tests at NASA Langley. “We’ll use the hybrid motor in the second phase of testing to capture data with conditions closely simulating those from a real rocket engine. Our research will reduce risk to the crew, lander, payloads, and surface assets.”
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Credit: NASA Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all.
      For more information about Artemis, visit:
      https://www.nasa.gov/artemis
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      View the full article
    • By NASA
      6 Min Read NASA Stennis Flashback: Learning About Rocket Engine Smoke for Safe Space Travel
      An image shows engineers at an early version of the test stand at the Diagnostic Testbed Facility. From 1988 to the mid-1990s, NASA Stennis engineers operated the facility to conduct rocket engine plume exhaust diagnostics and learn more about the space shuttle main engine combustion process. Credits: NASA/Stennis NASA’s Stennis Space Center near Bay St. Louis, Mississippi, is widely known as the nation’s largest rocket propulsion test site. More than 35 years ago, it also served as a hands-on classroom for NASA engineers seeking to improve the efficiency of space shuttle main engines.
      From 1988 to the mid-1990’s, NASA Stennis engineers operated a Diagnostic Test Facility to conduct rocket engine plume exhaust diagnostics and learn more about the space shuttle main engine combustion process. The effort also laid the groundwork for the frontline research-and-development testing conducted at the center today.
      “The Diagnostic Test Facility work is just another example of the can-do, will-do attitude of the NASA Stennis team and of its willingness to support the nation’s space exploration program in all ways needed and possible,” said Joe Schuyler, director of the NASA Stennis Engineering and Test Directorate.
      The Diagnostic Test Facility work is just another example of the can-do, will-do attitude of the NASA Stennis team…
      joe schuyler
      NASA Stennis Engineering and Test Directorate Director
      Tests conducted at the Diagnostic Testbed Facility played a critical safety role for engine operations and also provided a real-time opportunity for NASA Stennis engineers to learn about exhaust diagnostics. NASA/Stennis An image shows the Diagnostic Testbed Facility test stand data acquisition trailer. NASA/Stennis The Need
      Envision a rocket or space vehicle launching into the sky. A trail of bright exhaust, known as the engine plume, follows. As metals wear down in the engines from the intense heat of the combustion process, the flame glows with colors, some visible, such as orange or yellow, and others undetectable by the human eye.
      The colors tell a story – about the health and operation of the engine and its components. For space shuttle main engines, which flew on multiple missions, engineers needed to understand that story, much as a doctor needs to understand the condition of a human body during checkup, to ensure future engine operation.
      Where better place to study such details than the nation’s premier propulsion test site? Paging NASA Stennis.
      An image shows the rocket motor and thruster at the Diagnostic Testbed Facility. NASA/Stennis An image shows the Diagnostic Testbed Facility blended team of NASA personnel and contractors. Kneeling, left to right, is Brantly Adams (NASA), Felix Bircher (Sverdrup Technology), Dennis Butts (Sverdrup Technology), and Nikki Raines (Sverdrup Technology). Standing, left to right, NASA astronaut John Young, Greg Sakala (Sverdrup Technology), Barney Nokes (Sverdrup Technology), John Laboda (Sverdrup Technology), Glenn Varner (NASA), Stan Gill (NASA), Bud Nail (NASA), Don Sundeen (Sverdrup Technology), NASA astronaut John Blaha.NASA/Stennis The Facility
      NASA Stennis has long enabled and supported innovative and collaborative work to benefit both the agency and the commercial space industry. When NASA came calling in the late 1980s, site engineers went to work on a plan to study space shuttle main engine rocket exhaust.
      The concept for an enabling structure about the size of a home garage was born in October 1987. Five months later, construction began on a Diagnostic Testbed Facility to provide quality research capabilities for studying rocket engine exhaust and learning more about the metals burned off during hot fire.
      The completed facility featured a 1,300-square-foot control and data analysis center, as well as a rooftop observation deck. Small-scale infrastructure was located nearby for testing a 1,000-pound-thrust rocket engine that simulated the larger space shuttle main engine. The 1K engine measured about 2 feet in length and six inches in diameter. Using a small-scale engine allowed for greater flexibility and involved less cost than testing the much-larger space shuttle engine.
      An image shows Sverdrup Technology’s Robert Norfleet as he preps the dopant injection system for testing at the Diagnostic Testbed Facility. The goal of the facility was to inject known metals and materials in a chemical form and then look at what emissions were given off. During one test, generally a six or 12 second test, operators would inject three known dopants, or substances, and then run distilled water between each test to clean out the system.NASA/Stennis An image shows engineers Stan Gill, Robert Norfleet, and Elizabeth Valenti in the Diagnostic Testbed Facility test control center. NASA/Stennis The Process
      Engineers could quickly conduct multiple short-duration hot fires using the smaller engine. A six-second test provided ample time to collect data from engine exhaust that reached as high as 3,900 degrees Fahrenheit.
      Chemical solutions simulating engine materials were injected into the engine combustion chamber for each hot fire. The exhaust plume then was analyzed using a remote camera, spectrometer, and microcomputers to determine what colors certain metals and elements emit when burning.
      Each material produced a unique profile. By matching the profiles to the exhaust of space shuttle main engine tests conducted at NASA Stennis, determinations could be made about which engine components were undergoing wear and what maintenance was needed.
      We learned about purging, ignition, handling propellants, high-pressure gases, and all the components you had to have to make it work…It was a very good learning experience.
      Glenn Varner
      NASA Stennis Engineer
      The Benefits
      The Diagnostic Testbed Facility played a critical safety role for engine operations and also provided a real-time opportunity for NASA Stennis engineers to learn about exhaust diagnostics.
      Multiple tests were conducted. The average turnaround time between hot fires was 18 to 20 minutes with the best turnaround from one test to another taking just 12 minutes. By January 1991, the facility had recorded a total of 588 firings for a cumulative 3,452 seconds.
      As testing progressed, the facility team evolved into a collection of experts in plume diagnostics. Longtime NASA Stennis engineer Glenn Varner serves as the mechanical operations engineer at the Thad Cochran Test Stand, where he contributed to the successful testing of the first SLS (Space Launch System) core stage onsite.
      However, much of Varner’s hands-on experience came at the Diagnostic Test Facility. “We learned about purging, ignition, handling propellants, high-pressure gases, and all the components you had to have to make it work,” he said. “It was a very good learning experience.”
      An image shows the Diagnostic Testbed Facility team working in the test control center. Seated, left to right, is Steve Nunez, Glenn Varner, Joey Kirkpatrick. Standing, back row left to right, is Scott Dracon and Fritz Policelli. Vince Pachel is pictured standing wearing the headset. NASA/Stennis The physical remnants of the Diagnostic Testbed Facility are barely recognizable now, but that spirit and approach embodied by that effort and its teams continues in force at the center.
      joe schuyler
      NASA Stennis Engineering and Test Directorate Director
      The Impact
      The Diagnostic Testbed Facility impacted more than just those engineers involved in the testing. Following the initial research effort, the facility underwent modifications in January 1993. Two months later, facility operators completed a successful series of tests on a small-scale liquid hydrogen turbopump for a California-based aerospace company.
      The project marked an early collaboration between the center and a commercial company and helped pave the way for the continued success of the NASA Stennis E Test Complex. Building on Diagnostic Testbed Facility knowledge and equipment, the NASA Stennis complex now supports multiple commercial aerospace projects with its versatile infrastructure and team of propulsion test experts.
      “The physical remnants of the Diagnostic Testbed Facility are barely recognizable now,” Schuyler said. “But that spirit and approach embodied by that effort and its teams continues in force at the center.”
      Additional Information
      NASA Stennis has leveraged hardware and expertise from the Diagnostic Testbed Facility to provide benefit to NASA and industry for two decades and counting.
      The facility’s thruster, run tanks, valves, regulators and instrumentation were used in developing the versatile four-stand E Test Complex at NASA Stennis that includes 12 active test cell positions capable of various component, engine, and stage test activities.
      “The Diagnostic Testbed Facility was the precursor to that,” said NASA engineer Glenn Varner. “Everything but the structure still in the grass moved to the E-1 Test Stand, Cell 3. Plume diagnostics was part of the first testing there.”
      When plume diagnostic testing concluded at E-1, equipment moved to the E-3 Test Stand, where the same rocket engine used for the Diagnostic Testbed Facility has since performed many test projects.
      The Diagnostic Testbed Facility thruster also has been used for various projects at E-3, most recently in a project for the exploration upper stage being built for use on future Artemis missions. 
      In addition to hardware, engineers who worked at the Diagnostic Testbed Facility also moved on to support E Test Complex projects. There, they helped new NASA engineers learn how to handle gaseous hydrogen and liquid hydrogen propellants. Engineers learned about purging, ignition, and handling propellants and all the components needed for a successful test.
      “From an engineering perspective, the more knowledge you have of the processes and procedures to make propulsion work, the better off you are,” Varner said. “It applied then and still applies today. The Diagnostic Testbed Facility contributed to the future development of NASA Stennis infrastructure and expertise.”
      Share
      Details
      Last Updated Feb 25, 2025 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      4 min read NASA Stennis Flashback: Shuttle Team Achieves Unprecedented Milestone
      Article 7 months ago 4 min read Stennis Flashback: NASA Test Series Leads to Bold Space Shuttle Flight
      It may have been small, but the white puff of smoke exiting the B-2 Test…
      Article 2 years ago Keep Exploring Discover More Topics From NASA Stennis
      NASA’s Stennis Space Center History
      NASA Stennis Images
      NASA Stennis Fact Sheets
      NASA Stennis Front Door
      View the full article
    • By NASA
      NASA/Don Pettit On Jan. 10, 2025, NASA astronaut Don Pettit posted two images of the Los Angeles fires from the International Space Station. Multiple destructive fires broke out in the hills of Los Angeles County in early January 2025, fueled by a dry landscape and winds that gusted up to 100 miles per hour.
      See satellite imagery of the fires.
      Image credit: NASA/Don Pettit
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s X-59 quiet supersonic research aircraft sits in its run stall at Lockheed Martin’s Skunk Works facility in Palmdale, California, firing up its engine for the first time. These engine-run tests start at low power and allow the X-59 team to verify the aircraft’s systems are working together while powered by its own engine. The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to supersonic flight over land by making sonic booms quieter.NASA/Carla Thomas NASA’s Quesst mission marked a major milestone with the start of tests on the engine that will power the quiet supersonic X-59 experimental aircraft.
      These engine-run tests, which began Oct. 30, allow the X-59 team to verify the aircraft’s systems are working together while powered by its own engine. In previous tests, the X-59 used external sources for power. The engine-run tests set the stage for the next phase of the experimental aircraft’s progress toward flight.
      The X-59 team is conducting the engine-run tests in phases. In this first phase, the engine rotated at a relatively low speed without ignition to check for leaks and ensure all systems are communicating properly. The team then fueled the aircraft and began testing the engine at low power, with the goal of verifying that it and other aircraft systems operate without anomalies or leaks while on engine power.
      Lockheed Martin test pilot Dan Canin sits in the cockpit of NASA’s X-59 quiet supersonic research aircraft in a run stall at Lockheed Martin’s Skunk Works facility in Palmdale, California prior to its first engine run. These engine-run tests featured the X-59 powered by its own engine, whereas in previous tests, the aircraft depended on external sources for power. The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to supersonic flight over land by making sonic booms quieter.NASA/Carla Thomas “The first phase of the engine tests was really a warmup to make sure that everything looked good prior to running the engine,” said Jay Brandon, NASA’s X-59 chief engineer. “Then we moved to the actual first engine start. That took the engine out of the preservation mode that it had been in since installation on the aircraft. It was the first check to see that it was operating properly and that all the systems it impacted – hydraulics, electrical system, environmental control systems, etc. – seemed to be working.”
      The X-59 will generate a quieter thump rather than a loud boom while flying faster than the speed of sound. The aircraft is the centerpiece of NASA’s Quesst mission, which will gather data on how people perceive these thumps, providing regulators with information that could help lift current bans on commercial supersonic flight over land.
      The engine, a modified F414-GE-100, packs 22,000 pounds of thrust, which will enable the X-59 to achieve the desired cruising speed of Mach 1.4 (925 miles per hour) at an altitude of approximately 55,000 feet. It sits in a nontraditional spot – atop the aircraft — to aid in making the X-59 quieter.
      Engine runs are part of a series of integrated ground tests needed to ensure safe flight and successful achievement of mission goals. Because of the challenges involved with reaching this critical phase of testing, the X-59’s first flight is now expected in early 2025. The team will continue progressing through critical ground tests and address any technical issues discovered with this one-of-a-kind, experimental aircraft. The X-59 team will have a more specific first flight date as these tests are successfully completed.
      The testing is taking place at Lockheed Martin’s Skunk Works facility in Palmdale, California. During later phases, the team will test the aircraft at high power with rapid throttle changes, followed by simulating the conditions of an actual flight.
      NASA’s X-59 quiet supersonic research aircraft sits in its run stall at Lockheed Martin’s Skunk Works facility in Palmdale, California, prior to its first engine run. Engine runs are part of a series of integrated ground tests needed to ensure safe flight and successful achievement of mission goals. The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to supersonic flight over land by making sonic booms quieter.NASA/Carla Thomas “The success of these runs will be the start of the culmination of the last eight years of my career,” said Paul Dees, NASA’s deputy propulsion lead for the X-59. “This isn’t the end of the excitement but a small steppingstone to the beginning. It’s like the first note of a symphony, where years of teamwork behind the scenes are now being put to the test to prove our efforts have been effective, and the notes will continue to play a harmonious song to flight.”
      After the engine runs, the X-59 team will move to aluminum bird testing, where data will be fed to the aircraft under both normal and failure conditions. The team will then proceed with a series of taxi tests, where the aircraft will be put in motion on the ground. These tests will be followed by final preparations for first flight.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      1 min read NASA Awards Contract for Refuse and Recycling Services
      Article 5 days ago 5 min read We Are All Made of Cells: Space and the Immune System
      Article 6 days ago 2 min read NASA Brings Drone and Space Rover to Air Show
      Article 7 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans In Space
      Quesst: The Vehicle
      Explore NASA’s History
      Share
      Details
      Last Updated Nov 06, 2024 EditorLillian GipsonContactMatt Kamletmatthew.r.kamlet@nasa.gov Related Terms
      Aeronautics Aeronautics Research Mission Directorate Ames Research Center Armstrong Flight Research Center Glenn Research Center Langley Research Center Low Boom Flight Demonstrator Quesst (X-59) Quesst: The Vehicle Supersonic Flight View the full article
  • Check out these Videos

×
×
  • Create New...