Members Can Post Anonymously On This Site
Swarm yields new insight into animal migration
-
Similar Topics
-
By NASA
Explore This Section Science For Educators NUBE: New Card Game Helps… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 4 min read
NUBE: New Card Game Helps Learners Identify Cloud Types Through Play
Different clouds types can have different effects on our weather and climate, which makes identifying cloud types important – but learning to identify cloud types can be tricky! Educational games make the learning process easier and more enjoyable for learners of all ages and create an opportunity for families and friends to spend quality time together.
The NASA Science Activation Program’s NASA Earth Science Education Collaborative (NESEC) and the Queens Public Library co-developed a new Global Learning & Observations to Benefit the Environment (GLOBE) card game called NUBE (pronounced noo-beh) – the Spanish word for cloud. During this fun, interactive game, players match cards by cloud type or sky color – with 11 cloud types and 5 shades of blue (in real life, sky color can be an indication of how many aerosols are in the atmosphere). There are also special cards in the deck, such as Rainmakers, which change the order of play; Obscurations, which require the next player to draw two cards; and Mystery cards, which require players to give hints while other players guess the cloud type. By playing the game, participants practice learning the names of clouds while they begin to appreciate the differences in cloud type and sky color.
NESEC is collaborating with another NASA Science Activation project team – NASA@ My Library (NAML, led by the Space Science Institute, SSI – to get the game into library programs. NAML recruited and is distributing sets of two or four card decks to 292 U.S. libraries. Participating libraries are located in 45 states, with a large number (>50%) serving rural communities. SSI also promoted the opportunity to its network of libraries and co-presented a webinar with NESEC for interested libraries. Library applications described how they plan to use the game with their patrons, including programs for audiences ranging from kids to seniors related to weather and safety programs, citizen science clubs, home school groups, summer reading, game nights, circulating kits and more. Libraries that receive NUBE commit to use the game in at least one program and complete a short evaluation survey.
NUBE evolved through several iterations as staff from several Queens Public Library branches tested the game with different age groups, from young kids to teens and adults. The game was also tested at the Challenger Center and the Center for Science, Technology, Education, & Mathematics (STEM) Teaching and Learning at Northern Arizona University. Alex Hernandez Bonifacio, an early Learning Educator at Queens Public Library reported, “It was amazing to see what kids reflected on as they were playing NUBE. For example, there was this third grader who was surprised to realize something could obscure our view of the clouds. She used to think clouds were too high in the sky for anything to block our view of them. While playing NUBE, she became very intrigued about the obscuration cards, and she realized that things closer to the ground like heavy snow could in fact block our view of the clouds!” After incorporating feedback from testers and counting the votes for different graphic design options, NUBE is now ready to be downloaded and enjoyed by all!
If you’re excited to play this awesome GLOBE Clouds card game and want to learn even more about clouds, you can download the GLOBE Observer app on your smartphone to participate in hands-on NASA scientific research – sharing observations of your environment as a citizen scientist (no citizenship required)! Learn more and discover additional resources for engaging in clouds activities with the GLOBE Observer Clouds Toolkit.
NESEC, led by the Institute for Global Environmental Strategies (IGES) and supported by NASA under cooperative agreement award number NNX16AE28A, is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
NUBE, a GLOBE Clouds card game Share
Details
Last Updated Aug 01, 2025 Editor NASA Science Editorial Team Related Terms
Clouds Earth Science For Educators Grades 5 – 8 for Educators Grades 9-12 for Educators Grades K – 4 for Educators Science Activation Explore More
3 min read NASA eClips STEM Student Ambassadors Light Up CNU’s 2025 STEM Community Day
Article
1 week ago
2 min read GLOBE-Trotting Science Lands in Chesapeake with NASA eClips
Article
2 weeks ago
3 min read NASA Citizen Science and Your Career: Stories of Exoplanet Watch Volunteers
Doing NASA Science brings many rewards. But can taking part in NASA citizen science help…
Article
2 weeks ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
By NASA
This artist’s concept of Blue Ghost Mission 4 shows Firefly’s Blue Ghost lunar lander and NASA payloads in the lunar South Pole Region, through NASA’s CLPS (Commercial Lunar Payload Services) initiative.Credit: Firefly Aerospace NASA has awarded Firefly Aerospace of Cedar Park, Texas, $176.7 million to deliver two rovers and three scientific instruments to the lunar surface as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to explore more of the Moon than ever before.
This delivery is the first time NASA will use multiple rovers and a variety of stationary instruments, in a collaborative effort with the CSA (Canadian Space Agency) and the University of Bern, to help us understand the chemical composition of the lunar South Pole region and discover the potential for using resources available in permanently shadowed regions of the Moon.
“Through CLPS, NASA is embracing a new era of lunar exploration, with commercial companies leading the way,” said Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters in Washington. “These investigations will produce critical knowledge required for long-term sustainability and contribute to a deeper understanding of the lunar surface, allowing us to meet our scientific and exploration goals for the South Pole region of the Moon for the benefit of all.”
Under the new CLPS task order, Firefly is tasked with delivering end-to-end payload services to the lunar surface, with a period of performance from Tuesday to March 29, 2030. The company’s lunar lander is targeted to land at the Moon’s South Pole region in 2029.
This is Firefly’s fifth task order award and fourth lunar mission through CLPS. Firefly’s first delivery successfully landed on the Moon’s near side in March 2025 with 10 NASA payloads. The company’s second mission, targeting a launch in 2026, includes a lunar orbit drop-off of a satellite combined with a delivery to the lunar surface on the far side. Firefly’s third lunar mission will target landing in the Gruithuisen Domes on the near side of the Moon in 2028, delivering six experiments to study that enigmatic lunar volcanic terrain.
“As NASA sends both humans and robots to further explore the Moon, CLPS deliveries to the lunar South Pole region will provide a better understanding of the exploration environment, accelerating progress toward establishing a long-term human presence on the Moon, as well as eventual human missions to Mars,” said Adam Schlesinger, manager of the CLPS initiative at NASA’s Johnson Space Center in Houston.
The rovers and instruments that are part of this newly awarded flight include:
MoonRanger is an autonomous microrover that will explore the lunar surface. MoonRanger will collect images and telemetry data while demonstrating autonomous capabilities for lunar polar exploration. Its onboard Neutron Spectrometer System instrument will study hydrogen-bearing volatiles and the composition of lunar regolith, or soil.
Lead development organizations: NASA’s Ames Research Center in California’s Silicon Valley, and Carnegie Mellon University and Astrobotic, both in Pittsburgh. Stereo Cameras for Lunar Plume Surface Studies will use enhanced stereo imaging photogrammetry, active illumination, and ejecta impact detection sensors to capture the impact of the rocket exhaust plume on lunar regolith as the lander descends on the Moon’s surface. The high-resolution stereo images will help predict lunar regolith erosion and ejecta characteristics, as bigger, heavier spacecraft and hardware are delivered to the Moon near each other in the future.
Lead development organization: NASA’s Langley Research Center in Hampton, Virginia. Laser Retroreflector Array is an array of eight retroreflectors on an aluminum support structure that enables precision laser ranging, a measurement of the distance between the orbiting or landing spacecraft to the reflector on the lander. The array is a passive optical instrument, which functions without power, and will serve as a permanent location marker on the Moon for decades to come.
Lead development organization: NASA’s Goddard Space Flight Center in Greenbelt, Maryland. A CSA Rover is designed to access and explore remote South Pole areas of interest, including permanently shadowed regions, and to survive at least one lunar night. The CSA rover has stereo cameras, a neutron spectrometer, two imagers (visible to near-infrared), a radiation micro-dosimeter, and a NASA-contributed thermal imaging radiometer developed by the Applied Physics Laboratory. These instruments will advance our understanding of the physical and chemical properties of the lunar surface, the geological history of the Moon, and potential resources such as water ice. It will also improve our understanding of the environmental challenges that await future astronauts and their life support systems.
Lead development organization: CSA. Laser Ionization Mass Spectrometer is a mass spectrometer that will analyze the element and isotope composition of lunar regolith. The instrument will utilize a Firefly-built robotic arm and Titanium shovel that will deploy to the lunar surface and support regolith excavation. The system will then funnel the sample into its collection unit and use a pulsed laser beam to identify differences in chemistry compared to samples studied in the past, like those collected during the Apollo program. Grain-by-grain analyses will provide a better understanding of the chemical complexity of the landing site and the surrounding area, offering insights into the evolution of the Moon.
Lead development organization: University of Bern in Switzerland. Through the CLPS initiative, NASA purchases lunar landing and surface operations services from American companies. The agency uses CLPS to send scientific instruments and technology demonstrations to advance capabilities for science, exploration, or commercial development of the Moon, and to support human exploration beyond to Mars. By supporting a robust cadence of lunar deliveries, NASA will continue to enable a growing lunar economy while leveraging the entrepreneurial innovation of the commercial space industry.
To learn more about CLPS and Artemis, visit:
https://www.nasa.gov/clps
-end-
Alise Fisher
Headquarters, Washington
202-358-2546
alise.m.fisher@nasa.gov
Nilufar Ramji
Johnson Space Center, Houston
281-483-5111
nilufar.ramji@nasa.gov
Share
Details
Last Updated Jul 29, 2025 LocationNASA Headquarters Related Terms
Commercial Lunar Payload Services (CLPS) Artemis Earth's Moon View the full article
-
By Space Force
Space Systems Command has activated two new System Deltas within the mission area of the Space Force Program Executive Officer for Space Sensing.
View the full article
-
By NASA
NASA Glenn Research Center’s Thermal Energy Conversion Branch team and the University of Leicester’s Space Nuclear Power team pose for a photo at the center in Cleveland following a successful test in January 2025.Credit: NASA/Jef Janis To explore the unknown in deep space, millions of miles away from Earth, it’s crucial for spacecraft to have ample power. NASA’s radioisotope power systems (RPS) are a viable option for these missions and have been used for over 60 years, including for the agency’s Voyager spacecraft and Perseverance Mars rover. These nuclear batteries provide long-term electrical power for spacecraft and science instruments using heat produced by the natural radioactive decay of radioisotopes. Now, NASA is testing a new type of RPS heat source fuel that could become an additional option for future long-duration journeys to extreme environments.
Historically, the radioisotope plutonium-238 (plutonium oxide) has been NASA’s RPS heat source fuel of choice, but americium-241 has been a source of interest for the past two decades in Europe. In January, the Thermal Energy Conversion Branch at NASA’s Glenn Research Center in Cleveland and the University of Leicester, based in the United Kingdom, partnered through an agreement to put this new option to the test.
One method to generate electricity from radioisotope heat sources is the free-piston Stirling convertor. This is a heat engine that converts thermal energy into electrical energy. However, instead of a crankshaft to extract power, pistons float freely within the engine. It could operate for decades continuously without wear, as it does not have piston rings or rotating bearings that will eventually wear out. Thus, a Stirling convertor could generate more energy, allowing more time for exploration in deep space. Researchers from the University of Leicester — who have been leaders in the development of americium RPS and heater units for more than 15 years — and NASA worked to test the capabilities of a Stirling generator testbed powered by two electrically heated americium-241 heat source simulators.
“The concept started as just a design, and we took it all the way to the prototype level: something close to a flight version of the generator,” said Salvatore Oriti, mechanical engineer at Glenn. “The more impressive part is how quickly and inexpensively we got it done, only made possible by a great synergy between the NASA and University of Leicester teams. We were on the same wavelength and shared the same mindset.”
Salvatore Oriti, mechanical engineer in the Thermal Energy Conversion Branch at NASA’s Glenn Research Center in Cleveland, adjusts the Stirling testbed in preparation for testing at the center in January 2025.Credit: NASA/Jef Janis The university provided the heat source simulators and generator housing. The heat source simulator is the exact size and shape of their real americium-241 heat source, but it uses embedded electric heaters to create an equivalent amount of heat to simulate the decay of americium fuel and therefore drive generator operation. The Stirling Research Lab at Glenn provided the test station, Stirling convertor hardware, and support equipment.
“A particular highlight of this (testbed) design is that it is capable of withstanding a failed Stirling convertor without a loss of electrical power,” said Hannah Sargeant, research fellow at the University of Leicester. “This feature was demonstrated successfully in the test campaign and highlights the robustness and reliability of an Americium-Radioisotope Stirling Generator for potential future spaceflight missions, including long-duration missions that could operate for many decades.”
The test proved the viability of an americium-fueled Stirling RPS, and performance and efficiency targets were successfully met. As for what’s next, the Glenn team is pursuing the next version of the testbed that will be lower mass, higher fidelity, and undergo further environmental testing.
“I was very pleased with how smoothly everything went,” Oriti said of the test results. “Usually in my experience, you don’t accomplish everything you set out to, but we did that and more. We plan to continue that level of success in the future.”
For more information on NASA’s RPS programs, visit:
https://science.nasa.gov/rps
Explore More
2 min read GLOBE-Trotting Science Lands in Chesapeake with NASA eClips
On June 16-17, 2025, 50 students at Camp Young in Chesapeake, Virginia traded their usual…
Article 19 hours ago 6 min read 5 Things to Know About Powerful New U.S.-India Satellite, NISAR
Article 21 hours ago 3 min read NASA-Derived Textiles are Touring France by Bike
Article 4 days ago View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Information provided by the NASA-ISRO Synthetic Aperture Radar mission (NISAR) will help to protect and inform communities around the world. The data will aid in managing agricultural fields, monitoring volcanoes, and tracking land-based ice including glaciers.NASA/JPL-Caltech Data from NISAR will map changes to Earth’s surface, helping improve crop management, natural hazard monitoring, and tracking of sea ice and glaciers.
A new U.S.-India satellite called NISAR (NASA-ISRO Synthetic Aperture Radar) will provide high-resolution data enabling scientists to comprehensively monitor the planet’s land and ice surfaces like never before, building a detailed record of how they shift over time. Hailed as a critical part of a pioneering year for U.S.-India civil space cooperation by President Trump and Prime Minister Modi during their visit in Washington in February, the NISAR launch will advance U.S.-India cooperation and benefit the U.S. in the areas of disaster response and agriculture.
As the first joint satellite mission between NASA and the Indian Space Research Organisation (ISRO), NISAR marks a new chapter in the growing collaboration between the two space agencies. Years in the making, the launch of NISAR builds on a strong heritage of successful programs, including Chandrayaan-1 and the recent Axiom Mission 4, which saw ISRO and NASA astronauts living and working together aboard the International Space Station for the first time.
The information NISAR provides will help decision-makers, communities, and scientists monitor agricultural fields, refine understanding of natural hazards such as landslides and earthquakes, and help teams prepare for and respond to disasters like hurricanes, floods, and volcanic eruptions. The satellite will also provide key global observations of changes to ice sheets, glaciers, and permafrost, as well as forests and wetlands.
The NISAR mission is slated to launch no earlier than July 30 from Satish Dhawan Space Centre on India’s southeastern coast aboard an ISRO Geosynchronous Satellite Launch Vehicle.
Here are five things to know about NISAR:
1. The NISAR satellite will provide a 3D view of Earth’s land and ice.
Two synthetic aperture radars (SARs) aboard NISAR will detect changes in the planet’s surface down to fractions of an inch. The spacecraft will bounce microwave signals off Earth’s surface and receive the return signals on a radar antenna reflector measuring 39 feet (12 meters) across. The satellite’s ability to “see” through clouds and light rain, day and night, will enable data users to continuously monitor earthquake- and landslide-prone areas and determine how quickly glaciers and ice sheets are changing. It also will offer unprecedented coverage of Antarctica, information that will help with studying how the continent’s ice sheet changes over time.
2. Data from NISAR will provide critical insights to help governments and decision-makers plan for natural and human-caused hazards.
Earthquakes, volcanoes, and aging infrastructure can pose risks to lives and property. Able to see subtle changes in Earth’s surface, NISAR can help with hazard-monitoring efforts and potentially give decision-makers more time to prepare for a possible disaster. For earthquakes, NISAR will provide insights into which parts of a fault slowly move without producing quakes and which are locked together and could potentially slip. The satellite will be able to monitor the area around thousands of volcanoes, detecting land movement that could be a precursor to an eruption. When it comes to infrastructure such as levees, aqueducts, and dams, NISAR data collected over time can help managers detect if nearby land motion could jeopardize key structures, and then assess the integrity of those facilities.
3. The most advanced radar system ever launched as part of a NASA or ISRO mission, NISAR will generate more data on a daily basis than any previous Earth satellite from either agency.
About the length of a pickup truck, NISAR’s main body contains a dual-radar payload — an L-band system with a 10-inch (25-centimeter) wavelength and an S-band system with a 4-inch (10-centimeter) wavelength. Each system is sensitive to land and ice features of different sizes and specializes in detecting certain attributes, such as moisture content, surface roughness, and motion. By including both radars on one spacecraft — a first — NISAR will be more capable than previous SAR missions. These two radars, one from NASA and one from ISRO, and the data they will produce, exemplify how collaboration between spacefaring allies can achieve more than either would alone.
NISAR press kit The radars will generate about 80 terabytes of data products per day over the course of NISAR’s prime mission. That’s roughly enough data to fill about 150 512-gigabyte hard drives each day. The information will be processed, stored, and distributed via the cloud — and accessible to all.
This artist’s concept depicts the NISAR satellite in orbit over central and Northern California. The spacecraft will survey all of Earth’s land and ice-covered surfaces twice every 12 days.NASA/JPL-Caltech 4. The NISAR mission will help monitor ecosystems around the world.
The mission’s two radars will monitor Earth’s land and ice-covered surfaces twice every 12 days. Their near-comprehensive coverage will include areas not previously covered by other Earth-observing radar satellites with such frequency. The NISAR satellite’s L-band radar penetrates deep into forest canopies, providing insights into forest structure, while the S-band radar is ideal for monitoring crops. The NISAR data will help researchers assess how forests, wetlands, agricultural areas, and permafrost change over time.
5. The NISAR mission marks the first collaboration between NASA and ISRO on a project of this scale and marks the next step in a long line of Earth-observing SAR missions.
The NISAR satellite features components developed on opposite sides of the planet by engineers from ISRO and NASA’s Jet Propulsion Laboratory working together. The S-band radar was built at ISRO’s Space Applications Centre in Ahmedabad, while JPL built the L-band radar in Southern California. After engineers from JPL and ISRO integrated NISAR’s instruments with a modified ISRO I3K spacecraft bus and tested the satellite, ISRO transported NISAR to Satish Dhawan Space Centre in May 2025 to prepare it for launch.
The SAR technique was invented in the U.S. in 1952 and now countries around the globe have SAR satellites for a variety of missions. NASA first used the technique with a space-based satellite in 1978 on the ocean-observing Seasat, which included the first spaceborne SAR instrument for scientific observations. In 2012, ISRO began launching SAR missions starting with Radar Imaging Satellite (RISAT-1), followed by RISAT-1A in 2022, to support a wide range of applications in India.
More About NISAR
Managed by Caltech in Pasadena, JPL leads the U.S. component of the project and provided the L-band SAR. JPL also provided the radar reflector antenna, the deployable boom, a high-rate communication subsystem for science data, GPS receivers, a solid-state recorder, and payload data subsystem. NASA’s Goddard Space Flight Center manages the Near Space Network, which will receive NISAR’s L-band data.
The ISRO Space Applications Centre is providing the mission’s S-band SAR. The U R Rao Satellite Centre is providing the spacecraft bus. The rocket is from Vikram Sarabhai Space Centre, launch services are through Satish Dhawan Space Centre, and satellite mission operations are by the ISRO Telemetry Tracking and Command Network. The National Remote Sensing Centre is responsible for S-band data reception, operational products generation, and dissemination.
To learn more about NISAR, visit:
https://nisar.jpl.nasa.gov/
How New NASA, India Satellite NISAR Will See Earth Powerful New US-Indian Satellite Will Track Earth’s Changing Surface NASA-ISRO Radar Mission to Provide Dynamic View of Forests, Wetlands NASA-ISRO Mission Will Map Farmland From Planting to Harvest News Media Contacts
Andrew Wang / Jane J. Lee
Jet Propulsion Laboratory, Pasadena, Calif.
626-379-6874 / 626-491-1943
andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
2025-090
Share
Details
Last Updated Jul 21, 2025 Related Terms
NISAR (NASA-ISRO Synthetic Aperture Radar) Earth Science Earth Surface & Interior Jet Propulsion Laboratory Explore More
4 min read Linking Satellite Data and Community Knowledge to Advance Alaskan Snow Science
Seasonal snow plays a significant role in global water and energy cycles, and billions of…
Article 7 days ago 6 min read Meet Mineral Mappers Flying NASA Tech Out West
Article 2 weeks ago 3 min read NASA Aircraft, Sensor Technology, Aid in Texas Flood Recovery Efforts
Article 2 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.