Members Can Post Anonymously On This Site
Unique exoplanet photobombs Cheops study of nearby star system
-
Similar Topics
-
By Space Force
Space Systems Command has activated two new System Deltas within the mission area of the Space Force Program Executive Officer for Space Sensing.
View the full article
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Hubble and Artificial Intelligence Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 6 Min Read NASA’s Hubble, Chandra Spot Rare Type of Black Hole Eating a Star
NASA’s Hubble Space Telescope and NASA’s Chandra X-ray Observatory team up to identify a possible intermediate-mass black hole. Credits:
NASA, ESA, CXC, Yi-Chi Chang (National Tsing Hua University); Image Processing: Joseph DePasquale (STScI) NASA’s Hubble Space Telescope and NASA’s Chandra X-ray Observatory have teamed up to identify a new possible example of a rare class of black holes. Called NGC 6099 HLX-1, this bright X-ray source seems to reside in a compact star cluster in a giant elliptical galaxy.
Just a few years after its 1990 launch, Hubble discovered that galaxies throughout the universe can contain supermassive black holes at their centers weighing millions or billions of times the mass of our Sun. In addition, galaxies also contain as many as millions of small black holes weighing less than 100 times the mass of the Sun. These form when massive stars reach the end of their lives.
Far more elusive are intermediate-mass black holes (IMBHs), weighing between a few hundred to a few 100,000 times the mass of our Sun. This not-too-big, not-too-small category of black holes is often invisible to us because IMBHs don’t gobble as much gas and stars as the supermassive ones, which would emit powerful radiation. They have to be caught in the act of foraging in order to be found. When they occasionally devour a hapless bypassing star — in what astronomers call a tidal disruption event— they pour out a gusher of radiation.
The newest probable IMBH, caught snacking in telescope data, is located on the galaxy NGC 6099’s outskirts at approximately 40,000 light-years from the galaxy’s center, as described in a new study in the Astrophysical Journal. The galaxy is located about 450 million light-years away in the constellation Hercules.
A Hubble Space Telescope image of a pair of galaxies: NGC 6099 (lower left) and NGC 6098 (upper right). The purple blob depicts X-ray emission from a compact star cluster. The X-rays are produced by an intermediate-mass black hole tearing apart a star. Science: NASA, ESA, CXC, Yi-Chi Chang (National Tsing Hua University); Image Processing: Joseph DePasquale (STScI) Astronomers first saw an unusual source of X-rays in an image taken by Chandra in 2009. They then followed its evolution with ESA’s XMM-Newton space observatory.
“X-ray sources with such extreme luminosity are rare outside galaxy nuclei and can serve as a key probe for identifying elusive IMBHs. They represent a crucial missing link in black hole evolution between stellar mass and supermassive black holes,” said lead author Yi-Chi Chang of the National Tsing Hua University, Hsinchu, Taiwan.
X-ray emission coming from NGC 6099 HLX-1 has a temperature of 3 million degrees, consistent with a tidal disruption event. Hubble found evidence for a small cluster of stars around the black hole. This cluster would give the black hole a lot to feast on, because the stars are so closely crammed together that they are just a few light-months apart (about 500 billion miles).
The suspected IMBH reached maximum brightness in 2012 and then continued declining to 2023. The optical and X-ray observations over the period do not overlap, so this complicates the interpretation. The black hole may have ripped apart a captured star, creating a plasma disk that displays variability, or it may have formed a disk that flickers as gas plummets toward the black hole.
“If the IMBH is eating a star, how long does it take to swallow the star’s gas? In 2009, HLX-1 was fairly bright. Then in 2012, it was about 100 times brighter. And then it went down again,” said study co-author Roberto Soria of the Italian National Institute for Astrophysics (INAF). “So now we need to wait and see if it’s flaring multiple times, or there was a beginning, there was peak, and now it’s just going to go down all the way until it disappears.”
The IMBH is on the outskirts of the host galaxy, NGC 6099, about 40,000 light-years from the galaxy’s center. There is presumably a supermassive black hole at the galaxy’s core, which is currently quiescent and not devouring a star.
Black Hole Building Blocks
The team emphasizes that doing a survey of IMBHs can reveal how the larger supermassive black holes form in the first place. There are two alternative theories. One is that IMBHs are the seeds for building up even larger black holes by coalescing together, since big galaxies grow by taking in smaller galaxies. The black hole in the middle of a galaxy grows as well during these mergers. Hubble observations uncovered a proportional relationship: the more massive the galaxy, the bigger the black hole. The emerging picture with this new discovery is that galaxies could have “satellite IMBHs” that orbit in a galaxy’s halo but don’t always fall to the center.
Another theory is that the gas clouds in the middle of dark-matter halos in the early universe don’t make stars first, but just collapse directly into a supermassive black hole. NASA’s James Webb Space Telescope’s discovery of very distant black holes being disproportionately more massive relative to their host galaxy tends to support this idea.
However, there could be an observational bias toward the detection of extremely massive black holes in the distant universe, because those of smaller size are too faint to be seen. In reality, there could be more variety out there in how our dynamic universe constructs black holes. Supermassive black holes collapsing inside dark-matter halos might simply grow in a different way from those living in dwarf galaxies where black-hole accretion might be the favored growth mechanism.
“So if we are lucky, we’re going to find more free-floating black holes suddenly becoming X-ray bright because of a tidal disruption event. If we can do a statistical study, this will tell us how many of these IMBHs there are, how often they disrupt a star, how bigger galaxies have grown by assembling smaller galaxies.” said Soria.
The challenge is that Chandra and XMM-Newton only look at a small fraction of the sky, so they don’t often find new tidal disruption events, in which black holes are consuming stars. The Vera C. Rubin Observatory in Chile, an all-sky survey telescope from the U.S. National Science Foundation and the Department of Energy, could detect these events in optical light as far as hundreds of millions of light-years away. Follow-up observations with Hubble and Webb can reveal the star cluster around the black hole.
The Hubble Space Telescope has been operating for more than three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Related Images & Videos
NGC 6099 (Hubble + Chandra)
A Hubble Space Telescope image of a pair of galaxies: NGC 6099 (lower left) and NGC 6098 (upper right). The purple blob depicts X-ray emission from a compact star cluster. The X-rays are produced by an intermediate-mass black hole tearing apart a star.
NGC 6099 (Hubble)
A Hubble Space Telescope image of a pair of galaxies: NGC 6099 (lower left) and NGC 6098 (upper right). The white dot labeled HLX-1 is the visible-light component of the location of a compact star cluster where an intermediate-mass black hole is tearing apart a star.
NGC 6099 Compass Image
This compass image shows two elliptical galaxies, NGC 6098 at upper right and NGC 6099 at lower left. The fuzzy purple blob at bottom center shows X-ray emission produced by an intermediate-mass black hole tearing apart a star.
HLX-1 Illustration
This sequence of artistic illustrations, from upper left to bottom right, shows how a black hole in the core of a star cluster captures a bypassing star and gravitationally shreds it until there is an explosion, seen in the outskirts of the host galaxy.
HLX-1 Animation
This video is an illustration of an intermediate-mass black hole capturing and gravitationally shredding a star. It begins by zooming into a pair of galaxies. The galaxy at lower left, NGC 6099, contain a dense star cluster at center. The video then zooms into the heart of the cl…
Share
Details
Last Updated Jul 24, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Contact Media Claire Andreoli
NASA’s Goddard Space Flight Center
Greenbelt, Maryland
claire.andreoli@nasa.gov
Ray Villard
Space Telescope Science Institute
Baltimore, Maryland
Related Terms
Hubble Space Telescope Astrophysics Astrophysics Division Black Holes Chandra X-Ray Observatory Galaxies Goddard Space Flight Center Marshall Astrophysics Marshall Space Flight Center
Related Links and Documents
Chinese translation of release Science Paper: Multiwavelength Study of a Hyperluminous X-Ray Source near NGC6099: A Strong IMBH Candidate, PDF (1.81 MB)
Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Reshaping Our Cosmic View: Hubble Science Highlights
Hubble Black Holes
Hubble Focus: Black Holes – Into the Vortex
View the full article
-
By NASA
NASA’s TRACERS (Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites) mission launched at 2:13 p.m. EDT atop a SpaceX Falcon 9 rocket at Space Launch Complex 4 East at Vandenberg Space Force Base in California. Credit: SpaceX NASA’s newest mission, TRACERS, soon will begin studying how Earth’s magnetic shield protects our planet from the effects of space weather. Short for Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites, the twin TRACERS spacecraft lifted off at 11:13 a.m. PDT (2:13 p.m. EDT) Wednesday aboard a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California.
“NASA is proud to launch TRACERS to demonstrate and expand American preeminence in space science research and technology,” said acting NASA Administrator Sean Duffy. “The TRACERS satellites will move us forward in decoding space weather and further our understanding of the connection between Earth and the Sun. This mission will yield breakthroughs that will advance our pursuit of the Moon, and subsequently, Mars.”
The twin satellites will fly one behind the other – following as closely as 10 seconds apart over the same location – and will take a record-breaking 3,000 measurements in one year to build a step-by-step picture of how magnetic reconnection changes over time.
Riding along with TRACERS aboard the Falcon 9 were NASA’s Athena EPIC (Economical Payload Integration Cost), PExT (Polylingual Experimental Terminal), and REAL (Relativistic Electron Atmospheric Loss) missions – three small satellites to demonstrate new technologies and gather scientific data. These three missions were successfully deployed, and mission controllers will work to contact them over the coming hours and days.
Ground controllers for the TRACERS mission established communications with the second of the two spacecraft at 3:43 p.m. PDT (6:43 p.m. EDT), about 3 hours after it separated from the rocket. During the next four weeks, TRACERS will undergo a commissioning period during which mission controllers will check out their instruments and systems.
Once cleared, the twin satellites will begin their 12-month prime mission to study a process called magnetic reconnection, answering key questions about how it shapes the impacts of the Sun and space weather on our daily lives.
“NASA’s heliophysics fleet helps to safeguard humanity’s home in space and understand the influence of our closest star, the Sun,” said Joe Westlake, heliophysics division director at NASA Headquarters in Washington. “By adding TRACERS to that fleet, we will gain a better understanding of those impacts right here at Earth.”
The two TRACERS spacecraft will orbit through an open region in Earth’s magnetic field near the North Pole, called the polar cusp. Here, TRACERS will investigate explosive magnetic events that happen when the Sun’s magnetic field – carried through space in a stream of solar material called the solar wind – collides with Earth’s magnetic field. This collision creates a buildup of energy that causes magnetic reconnection, when magnetic field lines snap and explosively realign, flinging away nearby particles at high speeds.
Flying through the polar cusp allows the TRACERS satellites to study the results of these magnetic explosions, measuring charged particles that race down into Earth’s atmosphere and collide with atmospheric gases – giving scientist the tools to reconstruct exactly how changes in the incoming solar wind affect how, and how quickly, energy and particles are coupled into near-Earth space.
“The successful launch of TRACERS is a tribute to many years of work by an excellent team,” said David Miles, TRACERS principal investigator at the University of Iowa. “TRACERS is set to transform our understanding of Earth’s magnetosphere. We’re excited to explore the dynamic processes driving space weather.”
Small Satellites Along for Ride
Athena EPIC is a pathfinder mission that will demonstrate NASA’s use of an innovative and configurable commercial SmallSat architecture to improve flexibility of payload designs, reduce launch schedule, and reduce overall costs in future missions, as well as the benefits of working collaboratively with federal partners. In addition to this demonstration for NASA, once the Athena EPIC satellite completes its two-week commissioning period, the mission will spend the next 12 months taking measurements of outgoing longwave radiation from Earth.
The PExT demonstration will test interoperability between commercial and government communication networks for the first time by demonstrating a wideband polylingual terminal in low Earth orbit. This terminal will use software-defined radios to jump between government and commercial networks, similar to cell phones roaming between providers on Earth. These terminals could allow future missions to switch seamlessly between networks and access new commercial services throughout its lifecycle in space.
The REAL mission is a CubeSat that will investigate how energetic electrons are scattered out of the Van Allen radiation belts and into Earth’s atmosphere. Shaped like concentric rings high above Earth’s equator, the Van Allen belts are composed of a mix of high-energy electrons and protons that are trapped in place by Earth’s magnetic field. Studying electrons and their interactions, REAL aims to improve our understanding of these energetic particles that can damage spacecraft and imperil astronauts who pass through them.
The TRACERS mission is led by David Miles at the University of Iowa with support from the Southwest Research Institute in San Antonio, Texas. NASA’s Heliophysics Explorers Program Office at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, manages the mission for the Heliophysics Division at NASA Headquarters in Washington. The University of Iowa, Southwest Research Institute, University of California, Los Angeles, and the University of California, Berkeley, all lead instruments on TRACERS.
The Athena EPIC mission is led by NASA’s Langley Research Center in Hampton, Virginia, and is a partnership between National Oceanic and Atmospheric Administration, U.S. Space Force, and NovaWurks. Athena EPIC’s launch is supported by launch integrator SEOPS. The PExT demonstration is managed by NASA’s SCaN (Space Communications and Navigation) program in partnership with Johns Hopkins Applied Physics Laboratory, with launch support by York Space Systems. The REAL project is led by Dartmouth College in Hanover, New Hampshire, and is a partnership between Johns Hopkins Applied Physics Laboratory, Montana State University, and Boston University. Sponsored by NASA’s Heliophysics Division and CubeSat Launch Initiative, it was included through launch integrator Maverick Space Systems.
NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida, manages the VADR (Venture-class Acquisition of Dedicated and Rideshare) contract.
To learn more about TRACERS, visit:
https://nasa.gov/tracers
-end-
Abbey Interrante / Karen Fox
Headquarters, Washington
301-201-0124 / 202-358-1600
abbey.a.interrante@nasa.gov / karen.c.fox@nasa.gov
Sarah Frazier
Goddard Space Flight Center, Greenbelt, Maryland
202-853-7191
sarah.frazier@nasa.gov
Share
Details
Last Updated Jul 23, 2025 LocationNASA Headquarters Related Terms
TRACERS Earth Science Science Mission Directorate View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
An image of Betelgeuse, the yellow-red star, and the signature of its close companion, the faint blue object.Data: NASA/JPL/NOIRlab. Visualization: NOIRLAB. A century-old hypothesis that Betelgeuse, the 10th brightest star in our night sky, is orbited by a very close companion star was proved true by a team of astrophysicists led by a scientist at NASA’s Ames Research Center in California’s Silicon Valley.
The research published in The Astrophysical Journal Letters in the paper “Probable Direct Imaging Discovery of the Stellar Companion to Betelgeuse.”
Fluctuations in the brightness and measured velocity of Betelgeuse, the closest red supergiant star to Earth, had long presented clues that it may have a partner, but the bigger star’s intense glow made direct observations of any fainter neighbors nearly impossible.
Two recent studies by other teams of astronomers reignited the companion star hypothesis by using more than 100 years of Betelgeuse observations to provide predictions of the companion’s location and brightness.
If the smaller star did exist, the location predictions suggested that scientists had a window of just a few months to observe the companion star at its widest separation from Betelgeuse, as it orbited near the visible edge of the supergiant. After that, they would have to wait another three years for it to orbit to the other side and again leave the overpowering glow of its larger companion.
Searches for the companion were initially made using space-based telescopes, because observing through Earth’s atmosphere can blur images of astronomical objects. But these efforts did not detect the companion.
Steve Howell, a senior research scientist at Ames, recognized the ground-based Gemini North telescope in Hawai’i, one of the largest in the world, paired with a special, high-resolution camera built by NASA, had the potential to directly observe the close companion to Betelgeuse, despite the atmospheric blurring.
Officially called the ‘Alopeke speckle instrument, the advanced imaging camera let them obtain many thousands of short exposures to measure the atmospheric interference in their data and remove it with detailed image processing, providing an image of Betelgeuse and its companion.
Howell’s team detected the very faint companion star right where it was predicted to be, orbiting very close to the outer edge of Betelgeuse.
“I hope our discovery excites other astrophysicists about the robust power of ground-based telescopes and speckle imagers – a key to opening new observational windows,” said Howell. “This can help unlock the great mysteries in our universe.”
To start, this discovery of a close companion to Betelgeuse may explain why other similar red supergiant stars undergo periodic changes in their brightness on the scale of many years.
Howell plans to continue observations of Betelgeuse’s stellar companion to better understand its nature. The companion star will again return to its greatest separation from Betelgeuse in November 2027, a time when it will be easiest to detect.
Having found the long-anticipated companion star, Howell turned to giving it a name. The traditional star name “Betelgeuse” derives from Arabic, meaning “the hand of al-Jawza’,” a female figure in old Arabian legend. Fittingly, Howell’s team named the orbiting companion “Siwarha,” meaning “her bracelet.”
Photo of the constellation Orion, showing the location of Betelgeuse – and its newfound companion star.NOIRLab/Eckhard Slawik The NASA–National Science Foundation Exoplanet Observational Research Program (NN-EXPLORE) is a joint initiative to advance U.S. exoplanet science by providing the community with access to cutting-edge, ground-based observational facilities. Managed by NASA’s Exoplanet Exploration Program, NN-EXPLORE supports and enhances the scientific return of space missions such as Kepler, TESS (Transiting Exoplanet Survey Satellite), Hubble Space Telescope, and James Webb Space Telescope by enabling essential follow-up observations from the ground—creating strong synergies between space-based discoveries and ground-based characterization. NASA’s Exoplanet Exploration Program is located at the agency’s Jet Propulsion Laboratory.
To learn more about NN-EXPLORE, visit:
https://exoplanets.nasa.gov/exep/NNExplore/overview
Share
Details
Last Updated Jul 23, 2025 Related Terms
Astrophysics Ames Research Center Ames Research Center's Science Directorate Astrophysics Division Exoplanet Exploration Program General Science & Research Science Mission Directorate Explore More
4 min read NASA Tests 5G-Based Aviation Network to Boost Air Taxi Connectivity
Article 1 hour ago 3 min read NASA Tests Mixed Reality Pilot Simulation in Vertical Motion Simulator
Article 3 hours ago 2 min read Radio JOVE Volunteers Tune In to the Sun’s Low Notes
As the Sun approaches the most active part of its eleven-year magnetic cycle this summer,…
Article 5 hours ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
X-ray: NASA/CXC/RIT/A. Varga et al.; Illustration: NASA/CXC/SAO/M. Weiss; Image Processing: NASA/CXC/SAO/N. Wolk A star is unleashing a barrage of X-rays that is causing a closely-orbiting, young planet to wither away an astonishing rate, according to a new study using data from NASA’s Chandra X-ray Observatory and described in our latest press release. A team of researchers has determined that this planet will go from the size of Jupiter down to a small, barren world.
This graphic provides a visual representation of what astronomers think is happening around the star (known as TOI 1227) and a planet that is orbiting it at a fraction the distance between Mercury and the Sun. This “baby” planet, called TOI 1227 b, is just about 8 million years old, about a thousand times younger than our Sun. The main panel is an artist’s concept that shows the Jupiter-sized planet (lower left) around TOI 1227, which is a faint red star. Powerful X-rays from the star’s surface are tearing away the atmosphere of the planet, represented by the blue tail. The star’s X-rays may eventually completely remove the atmosphere.
The team used new Chandra data — seen in the inset — to measure the amounts of X-rays from TOI 1227 that are striking the planet. Using computer models of the effects of these X-rays, they concluded they will have a transformative effect, rapidly stripping away the planet’s atmosphere. They estimate that the planet is losing a mass equivalent to a full Earth’s atmosphere about every 200 years.
The researchers used different sets of data to estimate the age of TOI 1227 b. One method exploits measurements of how TOI 1227 b’s host star moves through space in comparison to nearby populations of stars with known ages. A second method compared the brightness and surface temperature of the star with theoretical models of evolving stars. The very young age of TOI 1227 b makes it the second youngest planet ever to be observed passing in front of its host star (a so-called transit). Previously the planet had been estimated by others to be about 11 million years old.
Of all the exoplanets astronomers have found with ages less than 50 million years, TOI 1227 b stands out for having the longest year and the host planet with the lowest mass. These properties, and the high dose of X-rays it is receiving, make it an outstanding target for future observations.
A paper describing these results has been accepted publication in The Astrophysical Journal and a preprint is available here. The authors of the paper are Attila Varga (Rochester Institute of Technology), Joel Kastner (Rochester Institute of Technology), Alexander Binks (University of Tubingen, Germany), Hans Moritz Guenther (Massachusetts Institute of Technology), and Simon J. Murphy (University of New South Wales Canberra in Australia).
NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
Read more from NASA’s Chandra X-ray Observatory Learn more about the Chandra X-ray Observatory and its mission here:
https://www.nasa.gov/chandra
https://chandra.si.edu
Visual Description
This release features an artist’s illustration of a Jupiter-sized planet closely orbiting a faint red star. An inset image, showing the star in X-ray light from Chandra, is superimposed on top of the illustration at our upper left corner.
At our upper right, the red star is illustrated as a ball made of intense fire. The planet, slightly smaller than the star, is shown at our lower left. Powerful X-rays from the star are tearing away the atmosphere of the planet, causing wisps of material to flow away from the planet’s surface in the opposite direction from the star. This gives the planet a slight resemblance to a comet, complete with a tail.
X-ray data from Chandra, presented in the inset image, shows the star as a small purple orb on a black background. Astronomers used the Chandra data to measure the amount of X-rays striking the planet from the star. They estimate that the planet is losing a mass equivalent to a full Earth’s atmosphere about every 200 years, causing it to ultimately shrink from the size of Jupiter down to a small, barren world.
News Media Contact
Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
corinne.m.beckinger@nasa.gov
Share
Details
Last Updated Jul 16, 2025 EditorLee MohonContactCorinne M. Beckingercorinne.m.beckinger@nasa.gov Related Terms
Astrophysics Chandra X-Ray Observatory Exoplanet Science Exoplanets Marshall Astrophysics Marshall Space Flight Center Science & Research Studying Exoplanets The Universe Explore More
6 min read NASA’s TRACERS Studies Explosive Process in Earth’s Magnetic Shield
High above us, particles from the Sun hurtle toward Earth, colliding with the upper atmosphere…
Article 3 hours ago 3 min read NASA Citizen Science and Your Career: Stories of Exoplanet Watch Volunteers
Doing NASA Science brings many rewards. But can taking part in NASA citizen science help…
Article 5 hours ago 4 min read NASA’s IXPE Imager Reveals Mysteries of Rare Pulsar
Article 1 day ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.