Members Can Post Anonymously On This Site
Exposing the Big Lie - America's UFO Technology
-
Similar Topics
-
By USH
Three U.S. military veterans, two from the Air Force and one from the Navy, took the stand Tuesday during the third congressional hearing on Unidentified Anomalous Phenomena (UAPs), the government’s sanitized new term for UFOs.
The most shocking moment came when Congressman Eric Burlison of Missouri unveiled never before seen military footage: a U.S. drone firing a hellfire missile at a mysterious object off the coast of Yemen on October 30, 2024.
The grainy black and white video shows the 100 pound precision weapon streaking toward the target, only to ricochet off harmlessly as the object shot away at impossible speed. Just as baffling, three smaller spheres hovered in formation around the craft, undisturbed by the impact.
Reactions were mixed. Skeptics immediately dismissed the video, claiming it could be nothing more than a misidentified balloon, its apparent speed exaggerated by the drone’s telephoto lens. Others suggested the missile was part of a weapons test rather than a failed strike on something otherworldly.
But the testimony didn’t stop with the video. Two veterans alleged the government has been actively silencing witnesses, threatening those who came forward, and even blacklisting service members who refused to stay quiet. Dylan Borland, a former Air Force geospatial intelligence specialist, testified that multiple agencies conspired to destroy his career blocking jobs, forging documents, and tampering with his security clearance.
For some, this hearing represented a breakthrough in UFO transparency. For others, it was little more than political theater. As one observer put it: it looks like it is just another carefully staged distraction, the UFO spectacle might just be a smokescreen for something deeper.
View the full article
-
By NASA
NASA and Northrop Grumman are preparing to send the company’s next cargo mission to the International Space Station, flying research to support Artemis missions to the Moon and human exploration of Mars and beyond, while improving life on Earth. SpaceX’s Falcon 9 rocket will launch Northrop Grumman’s 23rd commercial resupply services mission to the orbiting laboratory.
The investigations aboard the Cygnus spacecraft aim to refine semiconductor crystals for next-generation technologies, reduce harmful microbes, improve medication production, and manage fuel pressure.
NASA, Northrop Grumman, and SpaceX are targeting launch in mid-September from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
Read about some of the investigations traveling to the space station:
Better semiconductor crystals
Optical micrograph of a semiconductor composite wafer with embedded semimetal phases extracted from a space grown crystal in the SUBSA facility during Mission 1United Semiconductors LLC Researchers are continuing to fine-tune in-space production of semiconductor crystals, which are critical for modern devices like cellphones and computers.
The space station’s microgravity environment could enable large-scale manufacturing of complex materials, and leveraging the orbiting platform for crystal production is expected to lead to next-generation semiconductor technologies with higher performance, chip yield, and reliability.
“Semiconductor devices fabricated using crystals from a previous mission demonstrated performance gain by a factor of two and device yield enhanced by a factor of 10 compared to Earth-based counterparts,” said Partha S. Dutta, principal investigator, United Semiconductors LLC in Los Alamitos, California.
Dutta highlighted that three independent parties validated microgravity’s benefits for growing semiconductor crystals and that the commercial value of microgravity-enhanced crystals could be worth more than $1 million per kilogram (2.2 pounds).
Space-manufactured crystals could help meet the need for radiation-hardened, low-power, high-speed electronics and sensors for space systems. They also could provide reduced power use, increased speed, and improved safety. The technology also has ground applications, including electric vehicles, waste heat recovery, and medical tools.
Learn more about the SUBSA-InSPA-SSCug experiment.
Lethal light
Germicidal Ultraviolet (UV) light is emitted by an optical fiber running through the center of an agar plateArizona State University Researchers are examining how microgravity affects ultraviolet (UV) light’s ability to prevent the formation of biofilms — communities of microbes that form in water systems. Investigators developed special optical fibers to deliver the UV light, which could provide targeted, long-lasting, and chemical-free disinfection in space and on Earth.
“In any water-based system, bacterial biofilms can form on surfaces like pipes, valves, and sensors,” said co-investigator Paul Westerhoff, a professor at Arizona State University in Tempe. “This can cause serious problems like corrosion and equipment failure, and affect human health.”
The UV light breaks up DNA in microorganisms, preventing them from reproducing and forming biofilms. Preliminary evidence suggests biofilms behave differently in microgravity, which may affect how the UV light reaches and damages bacterial DNA.
“What we’ll learn about biofilms and UV light in microgravity could help us design safer water and air systems not just for space exploration, but for hospitals, homes, and industries back on Earth,” Westerhoff said.
Learn more about the GULBI experiment.
Sowing seeds for pharmaceuticals
NASA astronaut Loral O’Hara displays the specialized sample processor used for pharmaceutical research aboard the International Space StationNASA An investigation using a specialized pharmaceutical laboratory aboard the space station examines how microgravity may alter and enhance crystal structures of drug molecules. Crystal structure can affect the production, storage, effectiveness, and administration of medications.
“We are exploring drugs with applications in cardiovascular, immunologic, and neurodegenerative disease as well as cancer,” said principal investigator Ken Savin of Redwire Space Technologies in Greenville, Indiana. “We expect microgravity to yield larger, more uniform crystals.”
Once the samples return to Earth, researchers at Purdue University in West Lafayette, Indiana, will examine the crystal structures.
The investigators hope to use the space-made crystals as seeds to produce significant numbers of crystals on Earth.
“We have demonstrated this technique with a few examples, but need to see if it works in many examples,” Savin said. “It’s like being on a treasure hunt with every experiment.”
This research also helps enhance and expand commercial use of the space station for next-generation biotechnology research and in-space production of medications.
Learn more about the ADSEP PIL-11 experiment.
Keeping fuel cool
iss0NASA astronaut Joe Acaba installs hardware for the first effort in 2017 aboard the International Space Station to test controlling pressure in cryogenic fuel tanksNASA Many spacecraft use cryogenic or extremely cold fluids as fuel for propulsion systems. These fluids are kept at hundreds of degrees below zero to remain in a liquid state, making them difficult to use in space where ambient temperatures can vary significantly. If these fluids get too warm, they turn into gas and boiloff, or slowly evaporate and escape the tank, affecting fuel efficiency and mission planning.
A current practice to prevent this uses onboard fuel to cool systems before transferring fuel, but this practice is wasteful and not feasible for Artemis missions to the Moon and future exploration of Mars and beyond. A potential alternative is using special gases that do not turn into liquids at cold temperatures to act as a barrier in the tank and control the movement of the fuel.
Researchers are testing this method to control fuel tank pressure in microgravity. It could save an estimated 42% of propellant mass per year, according to Mohammad Kassemi, a researcher at NASA’s National Center for Space Exploration Research and Case Western Reserve University in Cleveland.
The test could provide insights that help improve the design of lightweight, efficient, long-term in-space cryogenic storage systems for future deep space exploration missions.
Learn more about the ZBOT-NC experiment.
Download high-resolution photos and videos of the research highlighted in this feature.
Learn more about the research aboard the International Space Station at:
www.nasa.gov/iss-science
Keep Exploring Discover More Topics From NASA
Latest News from Space Station Research
Space Station Research and Technology Resources
Space Station Research Results
Humans In Space
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Researchers Kelly Gilkey, Cy Peverill, Daniel Phan, Chase Haddix, and Ariel Tokarz test portable, handheld X-ray systems for use during future long-duration space missions at NASA’s Glenn Research Center in Cleveland on Friday, March 21, 2025. Credit: NASA/Sara Lowthian-Hanna As NASA plans future human exploration missions to the Moon, Mars, and beyond, new and unique challenges emerge — like communication delays and limited return-to-Earth options — so enhanced medical care capabilities are critical. Crews will need non-invasive imaging technology to diagnose medical conditions, like broken bones or dental injuries.
Scientists at NASA’s Glenn Research Center in Cleveland are testing portable, handheld X-ray systems for use during future extended space missions. Having portable X-ray capabilities aboard spacecraft would allow astronauts to immediately assess and treat potential injuries or identify equipment issues without having to disassemble the gear.
“Technological innovations like that of the mini-X-ray will help keep our astronauts healthy as we endeavor farther into space than ever before,” said acting NASA Administrator Sean Duffy. “Future missions to the Moon and Mars will be safer due to the research of our scientists at NASA Glenn.”
NASA reviewed more than 200 commercial systems — analyzing size, weight, image quality, ease-of-use, cost, and safety — and selected three systems for further testing: MinXray, Remedi, and Fujifilm.
“We’re working to provide evidence on why a mini-X-ray system should be included in future space exploration,” said Dr. Chase Haddix, a senior biomedical engineering research contractor working for Universities Space Research Association at NASA Glenn. “These X-rays could be used to detect both clinical and non-clinical diagnostics, meaning they can check an astronaut’s body or identify the location of a tear in an astronaut suit.”
Researchers capture X-ray images of a shape memory alloy rover tire at NASA’s Glenn Research Center in Cleveland on Friday, March 21, 2025. Credit: NASA/Sara Lowthian-Hanna NASA Glenn is collaborating with other centers, including NASA’s Johnson Space Center in Houston and NASA’s Langley Research Center in Hampton, Virginia, and radiography experts at University Hospitals and Cuyahoga Community College in Cleveland.
“We’re fortunate to have enthusiastic medical and radiography experts right here in our community,” said Dr. Cy Peverill, project task lead at NASA Glenn. “Their knowledge and experience are invaluable as we work to test medical technologies that could significantly improve management of astronaut health on future missions to the Moon or Mars.”
Cuyahoga Community College contributed anatomical phantoms, which are lifelike models of the human body, in its radiography laboratory on the Western Campus and dental hygiene clinical facility at the Metropolitan Campus. Faculty and students consulted with NASA researchers on essential imaging principles, including patient positioning, image acquisition, and image quality.
University Hospitals is partnering with NASA Glenn on a medical study with real patients to compare the performance of the X-ray systems against hospital-grade equipment, focusing on usability, image clarity, and diagnostic accuracy.
“Astronauts live and work in small quarters, much smaller spaces than in a hospital,” Haddix said. “The system must be easy to use since astronauts may not be experienced in radiography. The data from these tests will guide the selection of the most suitable system for future missions.”
Researchers capture X-ray images of an astronaut spacesuit at NASA’s Glenn Research Center in Cleveland on Friday, March 21, 2025. Credit: NASA/Sara Lowthian-Hanna Using portable X-rays to improve health care in inaccessible areas is not new, with systems deployed to diagnose medical issues in places such as base camps in Nepal and remote villages in South Africa. NASA researchers theorize that if these systems are successful in high elevations and extreme temperatures on Earth, perhaps they are durable enough for space missions.
Glenn researchers will continue to collect data from all collaborators, including from an X-ray system sourced by SpaceX that launched in April during the Fram2 mission. The crew captured the first human X-ray images in space during their four-day mission to low Earth orbit. NASA plans to select a device near the end of 2025 and will test the chosen system aboard the International Space Station in 2026 or early 2027.
The Mars Campaign Office at NASA Headquarters in Washington and the agency’s Human Research Program at NASA Johnson fund this work as both organizations focus on pursuing technologies and methods to support safe, productive human space travel.
Explore More
2 min read Lydia Rodriguez Builds a Career of Service and Support at NASA
Article 2 days ago 3 min read What’s Up: September 2025 Skywatching Tips from NASA
Saturn’s spectacle, a Conjunction, and the Autumnal Equinox Saturn shines throughout the month, a conjunction…
Article 2 days ago 2 min read Hubble Homes in on Galaxy’s Star Formation
This NASA/ESA Hubble Space Telescope image features a galaxy whose asymmetric appearance may be the…
Article 6 days ago View the full article
-
By NASA
Deputy Project Manager for Resources – Goddard Space Flight Center
Katie Bisci, photographed here with a model of NASA’s Nancy Grace Roman Space Telescope, Credit: NASA/Jolearra Tshiteya How are you helping set the stage for the Roman mission?
I’m a deputy project manager for resources on the Nancy Grace Roman Space Telescope team, sharing the role with Kris Steeley. Together, we oversee the business team, finance, outreach, scheduling, and more. I focus more on the “down and in” of the day-to-day team — helping the financial team, resource utilization across the project, and support service contracts management — while Kris handles more of the “up and out” external work with center management and NASA Headquarters. Kris and I collaborate on many things as well. The two of us have been together on Roman for many years, and we have definitely become one brain in many aspects of the role. The main goal in the job is programmatics: We need to understand and help along the technical parts of the mission, while also supporting cost and schedule control since Roman is a cost-capped mission. I try to make sure that I partner with our engineers to understand the technical part of Roman as much as possible. I find that I can’t do my job well on the programmatic side without working together closely with our engineers to understand the hardware and testing.
What drew you to NASA? Did you always intend to work here?
I think I always knew I wanted to go into the business and finance side of things, but I thought I’d end up at a big investment bank. I interned at one during college, but it just didn’t feel right for me. After graduating, I worked on corporate events for defense contractors in New York City. Then my husband got a job in Annapolis, Maryland, and I took a leap and applied for a resource analyst job at NASA, where some college friends were working. Looking back, as an oldest daughter it probably should have been obvious that project management would be a good fit! Once I got to NASA, I was really drawn in by the missions and work we do. It was so different from the corporate world. Being able to work on some of the coolest missions with some of the most brilliant minds out there is a gift. Almost 15 years later, I’m still here.
How did your career grow from there?
After serving as a resource analyst in the Safety and Mission Assurance Directorate at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, I moved into the center’s Astrophysics Projects Division, where I began working on Roman in 2012, back when it was just a small study called WFIRST (Wide Field Infrared Survey Telescope). I could never have imagined at the time what that small study would turn into. People at NASA often say they “grew up” on the James Webb Space Telescope, and for me I definitely “grew up” on Roman. I became the mission business manager, then financial manager, and now a deputy project manager for resources. I feel lucky that most of my career has been spent on Roman. Adding it up, I’ve been on this project for over a decade. I’ve worked with so many amazing people, not just at NASA Goddard, but across the United States. It’s hard to believe we are so close to launching.
What’s been the highlight of your career so far?
Becoming part of the management team on Roman, for sure. Working with the leadership team has been incredible. The best part about Roman is the people. It still cracks me up to look at the plethora of people we have in the same room for our weekly senior staff meeting, from the programmatic and finance types like myself, to engineers leading super complicated integration and test programs, Ph.D.s, and some of the most brilliant science minds I will probably ever know. The Roman team is amazing, and those relationships are what keep me excited to come to work every day.
Has your work influenced your understanding or appreciation of astronomy?
Absolutely. I’ve learned so much just by being around brilliant people like our project scientist Julie McEnery. I even recently gave a talk about Roman at my daughter’s school! Being able to stand up in front of a group of children and talk about what Roman science is going to do is something I never would have been able to do prior to working here. I’ve learned about how the Hubble Space Telescope, Webb, and Roman all build on each other during my time on this project. And it’s really incredible science. I’ve also developed a deep admiration for the engineers who have built Roman. As a business focused person, our engineering team has really helped me understand the different facets of what our engineering team does on Roman. They are so patient with me! It’s really fulfilling to be a small part of something so big.
What advice do you have for others who are interested in doing similar work?
If you’re in finance, don’t just learn the numbers — learn the work behind them. Understand the mission, the tech, the people. That’s what helps you move from analyst to leader. People can tell when you really get what they’re doing, and that’s how you become a better partner and manager.
What’s life like outside NASA?
I have three kids — ages 9, 5, and 3 — so life is busy! When I’m not working, I’m usually at their sports games or chauffeuring them around to one event or another. It’s a little bit of a rat race, but this season of life is also really fun. Recently, my family and I have gotten back into traveling now that my kids are a little bit older. We took a spring break trip to Europe, which was fantastic. Spending time with my family and friends is everything. Whether it’s going to the beach, spending time at the pool, or hanging out on the sideline of a lacrosse game, just like at work it’s being with my people that I thrive on. And maybe one day I will have time for more hobbies again!
By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Aug 26, 2025 EditorAshley BalzerLocationGoddard Space Flight Center Related Terms
Goddard Space Flight Center Nancy Grace Roman Space Telescope People of Goddard View the full article
-
By USH
The first video, beginning around the 1:02 mark, was captured on a dash cam while driving eastbound on a four-lane freeway. Suddenly, a large triangular craft entered the frame, flying approximately 300 to 400 feet above the road.
Although the exact location remains unknown, the sighting is remarkable for its level of visible detail:
A blinking light with two dull orange lights in the center. A large circular feature on the underside, possibly an energy source. A distinctly aerodynamic triangular design. What appears to be an energy field or interference surrounding the craft. An estimated width of 75 to 100 feet, with no audible sound, suggesting non-conventional technology.
When viewed in slow motion, the footage stands out as one of the most striking nighttime captures to date, raising the question: is this a black-budget military project, or evidence of something extraterrestrial? Interestingly, the triangular craft bears a strong resemblance to the rumored TR-3B black manta, an alleged anti-gravity alien reproduction vehicle.
Additional almost similar sightings in Texas and Florida.
Austin, Texas: A dark craft hovering silently in the night sky, completely stationary throughout the entire recording. Sarasota, Florida: Three energy sources forming a triangular pattern while hovering in the night sky. It looks like it could be one of those triangle crafts.
Today, many aerial craft, whether human-made or not, are observed using technologies that remain beyond our current understanding.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.