Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      These images captured by the Curiosity rover in 2014 reveals yet another unexplained aerial phenomenon in the Martian atmosphere, a cigar-shaped object with a consistent width and rounded ends. 

      What makes this anomaly particularly compelling is the sharp clarity of the image. According to Jean Ward the stars in the background appear crisp and unblurred, indicating that the object is not the result of motion blur or a long exposure. Notably, the object appears in five separate frames over an 8-minute span, suggesting it is moving relatively slowly through space, uncharacteristic of a meteorite entering the atmosphere. It also lacks the fiery tail typically associated with atmospheric entry. 

      Rather than a meteor, the object more closely resembles a solid, elongated craft of unknown origin. When oriented horizontally, it even appears to feature a front-facing structure, possibly a porthole or raised dome, hinting at a cockpit or command module. 

      Whether this object is orbiting beyond the visible horizon or connected to the surface far in the distance, its sheer size is unmistakable. Its presence raises compelling questions, could this be further evidence of intelligently controlled craft, whether of extraterrestrial or covert human origin, navigating through Martian airspace?View the full article
    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read Frigid Exoplanet in Strange Orbit Imaged by NASA’s Webb
      This image of exoplanet 14 Herculis c was taken by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera). A star symbol marks the location of the host star 14 Herculis, whose light has been blocked by a coronagraph on NIRCam (shown here as a dark circle outlined in white). Credits:
      NASA, ESA, CSA, STScI, W. Balmer (JHU), D. Bardalez Gagliuffi (Amherst College) A planetary system described as abnormal, chaotic, and strange by researchers has come into clearer view with NASA’s James Webb Space Telescope. Using Webb’s NIRCam (Near-Infrared Camera), researchers have successfully imaged one of two known planets surrounding the star 14 Herculis, located 60 light-years away from Earth in our own Milky Way galaxy.
      The exoplanet, 14 Herculis c, is one of the coldest imaged to date. While there are nearly 6,000 exoplanets that have been discovered, only a small number of those have been directly imaged, most of those being very hot (think hundreds or even thousands of degrees Fahrenheit). The new data suggests 14 Herculis c, which weighs about 7 times the planet Jupiter, is as cool as 26 degrees Fahrenheit (minus 3 degrees Celsius).
      Image: 14 Herculis c (NIRCam)
      This image of exoplanet 14 Herculis c was taken by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera). A star symbol marks the location of the host star 14 Herculis, whose light has been blocked by a coronagraph on NIRCam (shown here as a dark circle outlined in white). NASA, ESA, CSA, STScI, W. Balmer (JHU), D. Bardalez Gagliuffi (Amherst College) The team’s results covering 14 Herculis c have been submitted to The Astrophysical Journal Letters and were presented in a press conference Tuesday at the 246th meeting of the American Astronomical Society in Anchorage, Alaska.
      “The colder an exoplanet, the harder it is to image, so this is a totally new regime of study that Webb has unlocked with its extreme sensitivity in the infrared,” said William Balmer, co-first author of the new paper and graduate student at Johns Hopkins University. “We are now able to add to the catalog of not just hot, young exoplanets imaged, but older exoplanets that are far colder than we’ve directly seen before Webb.”
      Webb’s image of 14 Herculis c also provides insights into a planetary system unlike most others studied in detail with Webb and other ground- and space-based `observatories. The central star, 14 Herculis, is almost Sun-like – it is similar in age and temperature to our own Sun, but a little less massive and cooler.
      There are two planets in this system – 14 Herculis b is closer to the star, and covered by the coronagraphic mask in the Webb image. These planets don’t orbit each other on the same plane like our solar system. Instead, they cross each other like an ‘X’, with the star being at the center. That is, the orbital planes of the two planets are inclined relative to one another at an angle of about 40 degrees. The planets tug and pull at one another as they orbit the star.
      This is the first time an image has ever been snapped of an exoplanet in such a mis-aligned system.
      Scientists are working on several theories for just how the planets in this system got so “off track.” One of the leading concepts is that the planets scattered after a third planet was violently ejected from the system early in its formation.
      “The early evolution of our own solar system was dominated by the movement and pull of our own gas giants,” added Balmer. “They threw around asteroids and rearranged other planets. Here, we are seeing the aftermath of a more violent planetary crime scene. It reminds us that something similar could have happened to our own solar system, and that the outcomes for small planets like Earth are often dictated by much larger forces.”
      Understanding the Planet’s Characteristics With Webb
      Webb’s new data is giving researchers further insights into not just the temperature of 14 Herculis c, but other details about the planet’s orbit and atmosphere.
      Findings indicate the planet orbits around 1.4 billion miles from the host star in a highly elliptical, or football-shaped orbit, closer in than previous estimates. This is around 15 times farther from the Sun than Earth. On average, this would put 14 Herculis c between Saturn and Uranus in our solar system.
      The planet’s brightness at 4.4 microns measured using Webb’s coronagraph, combined with the known mass of the planet and age of the system, hints at some complex atmospheric dynamics at play.
      “If a planet of a certain mass formed 4 billion years ago, then cooled over time because it doesn’t have a source of energy keeping it warm, we can predict how hot it should be today,” said Daniella C. Bardalez Gagliuffi of Amherst College, co-first author on the paper with Balmer. “Added information, like the perceived brightness in direct imaging, would in theory support this estimate of the planet’s temperature.”
      However, what researchers expect isn’t always reflected in the results. With 14 Herculis c, the brightness at this wavelength is fainter than expected for an object of this mass and age. The research team can explain this discrepancy, though. It’s called carbon disequilibrium chemistry, something often seen in brown dwarfs.
      “This exoplanet is so cold, the best comparisons we have that are well-studied are the coldest brown dwarfs,” Bardalez Gagliuffi explained. “In those objects, like with 14 Herculis c, we see carbon dioxide and carbon monoxide existing at temperatures where we should see methane. This is explained by churning in the atmosphere. Molecules made at warmer temperatures in the lower atmosphere are brought to the cold, upper atmosphere very quickly.”
      Researchers hope Webb’s image of 14 Herculis c is just the beginning of a new phase of investigation into this strange system.
      While the small dot of light obtained by Webb contains a plethora of information, future spectroscopic studies of 14 Herculis could better constrain the atmospheric properties of this interesting planet and help researchers understand the dynamics and formation pathways of the system.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Hannah Braun – hbraun@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Video: Eclipse/Coronagraph Animation
      Webb Blog: How Webb’s Coronagraphs Reveal Exoplanets in the Infrared
      Read more about Webb’s Impact on Exoplanet Research
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Exoplanets



      Exoplanet Stories



      Universe


      Share








      Details
      Last Updated Jun 10, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      Exoplanets Astrophysics Goddard Space Flight Center James Webb Space Telescope (JWST) Science & Research Studying Exoplanets The Universe View the full article
    • By European Space Agency
      The European Space Agency’s (ESA) newest planetary defender has opened its ‘eye’ to the cosmos for the first time. The Flyeye telescope’s ‘first light’ marks the beginning of a new chapter in how we scan the skies for new near-Earth asteroids and comets.
      View the full article
    • By NASA
      2 Min Read June’s Night Sky Notes: Seasons of the Solar System
      Two views of the planet Uranus appear side-by-side for comparison. At the top, left corner of the left image is a two-line label. The top line reads Uranus November 9, 2014. The bottoms line reads HST WFC3/UVIS. At the top, left corner of the right image is the label November 9, 2022. At the left, bottom corner of each image is a small, horizontal, white line. In both panels, over this line is the value 25,400 miles. Below the line is the value 40,800 kilometers. At the top, right corner of the right image are three, colored labels representing the color filters used to make these pictures. Located on three separate lines, these are F467M in blue, F547M in green, and F485M in red. On the bottom, right corner of the right image are compass arrows showing north toward the top and east toward the left. Credits:
      NASA by Kat Troche of the Astronomical Society of the Pacific
      Here on Earth, we undergo a changing of seasons every three months. But what about the rest of the Solar System? What does a sunny day on Mars look like? How long would a winter on Neptune be? Let’s take a tour of some other planets and ask ourselves what seasons might look like there.
      Martian Autumn
      Although Mars and Earth have nearly identical axial tilts, a year on Mars lasts 687 Earth days (nearly 2 Earth years) due to its average distance of 142 million miles from the Sun, making it late autumn on the red planet. This distance and a thin atmosphere make it less than perfect sweater weather. A recent weather report from Gale Crater boasted a high of -18 degrees Fahrenheit for the week of May 20, 2025.
      Credit: NASA/JPL-Caltech Seven Years of Summer
      Saturn has a 27-degree tilt, very similar to the 25-degree tilt of Mars and the 23-degree tilt of Earth. But that is where the similarities end. With a 29-year orbit, a single season on the ringed planet lasts seven years. While we can’t experience a Saturnian season, we can observe a ring plane crossing here on Earth instead. The most recent plane crossing took place in March 2025, allowing us to see Saturn’s rings ‘disappear’ from view.
      A Lifetime of Spring
      NASA Hubble Space Telescope observations in August 2002 show that Neptune’s brightness has increased significantly since 1996. The rise is due to an increase in the amount of clouds observed in the planet’s southern hemisphere. These increases may be due to seasonal changes caused by a variation in solar heating. Because Neptune’s rotation axis is inclined 29 degrees to its orbital plane, it is subject to seasonal solar heating during its 164.8-year orbit of the Sun. This seasonal variation is 900 times smaller than experienced by Earth because Neptune is much farther from the Sun. The rate of seasonal change also is much slower because Neptune takes 165 years to orbit the Sun. So, springtime in the southern hemisphere will last for several decades! Remarkably, this is evidence that Neptune is responding to the weak radiation from the Sun. These images were taken in visible and near-infrared light by Hubble’s Wide Field and Planetary Camera 2. Credit: NASA, L. Sromovsky, and P. Fry (University of Wisconsin-Madison) Even further away from the Sun, each season on Neptune lasts over 40 years. Although changes are slower and less dramatic than on Earth, scientists have observed seasonal activity in Neptune’s atmosphere. These images were taken between 1996 and 2002 with the Hubble Space Telescope, with brightness in the southern hemisphere indicating seasonal change.
      As we welcome summer here on Earth, you can build a Suntrack model that helps demonstrate the path the Sun takes through the sky during the seasons. You can find even more fun activities and resources like this model on NASA’s Wavelength and Energy activity. 
      View the full article
    • By Amazing Space
      What Is That Strange Dot Moving Across The Sun?
  • Check out these Videos

×
×
  • Create New...