Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The Artemis I SLS (Space Launch System) rocket and Orion spacecraft is pictured in the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida before rollout to launch pad 39B, in March 2022.Credit: NASA/Frank Michaux Media are invited to see NASA’s fully assembled Artemis II SLS (Space Launch System) rocket and Orion spacecraft in mid-October before its crewed test flight around the Moon next year.  
      The event at NASA’s Kennedy Space Center in Florida will showcase hardware for the Artemis II lunar mission, which will test capabilities needed for deep space exploration. NASA and industry subject matter experts will be available for interviews.
      Attendance is open to U.S. citizens and international media. Media accreditation deadlines are as follows:
      International media without U.S. citizenship must apply by 11:59 p.m. EDT on Monday, Sept. 22. U.S. media and U.S. citizens representing international media organizations must apply by 11:59 p.m. EDT on Monday, Sept. 29. Media wishing to take part in person must apply for credentials at:
      https://media.ksc.nasa.gov
      Credentialed media will receive a confirmation email upon approval, along with additional information about the specific date for the mid-October activities when they are determined. NASA’s media accreditation policy is available online. For questions about accreditation, please email: ksc-media-accreditat@mail.nasa.gov. For other questions, please contact the NASA Kennedy newsroom at: 321-867-2468.
      Prior to the media event, the Orion spacecraft will transition from the Launch Abort System Facility to the Vehicle Assembly Building at NASA Kennedy, where it will be placed on top of the SLS rocket. The fully stacked rocket will then undergo complete integrated testing and final hardware closeouts ahead of rolling the rocket to Launch Pad 39B for launch. During this effort, technicians will conduct end-to-end communications checkouts, and the crew will practice day of launch procedures during their countdown demonstration test.
      Artemis II will send NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen on an approximately 10-day journey around the Moon and back. As part of a Golden Age of innovation and exploration, Artemis will pave the way for new U.S.-crewed missions on the lunar surface ahead in preparation toward the first crewed mission to Mars.

      To learn more about the Artemis II mission, visit:
      https://www.nasa.gov/mission/artemis-ii
      -end-
      Rachel Kraft / Lauren Low
      Headquarters, Washington
      202-358-1100
      rachel.h.kraft@nasa.gov / lauren.e.low@nasa.gov  
      Tiffany Fairley
      Kennedy Space Center, Fla.
      321-867-2468
      tiffany.l.fairley@nasa.gov
      Share
      Details
      Last Updated Sep 10, 2025 LocationNASA Headquarters Related Terms
      Artemis 2 Artemis Orion Multi-Purpose Crew Vehicle Space Launch System (SLS) View the full article
    • By NASA
      Software designed to give spacecraft more autonomy could support a future where swarms of satellites navigate and complete scientific objectives with limited human intervention.
      Caleb Adams, Distributed Spacecraft Autonomy project manager, monitors testing alongside the test racks containing 100 spacecraft computers at NASA’s Ames Research Center in California’s Silicon Valley. The DSA project develops and demonstrates software to enhance multi-spacecraft mission adaptability, efficiently allocate tasks between spacecraft using ad-hoc networking, and enable human-swarm commanding of distributed space missions. Credit: NASA/Brandon Torres Navarrete Astronauts living and working on the Moon and Mars will rely on satellites to provide services like navigation, weather, and communications relays. While managing complex missions, automating satellite communications will allow explorers to focus on critical tasks instead of manually operating satellites.  
      Long duration space missions will require teaming between systems on Earth and other planets. Satellites orbiting the Moon, Mars, or other distant areas face communications delays with ground operators which could limit the efficiency of their missions.  
      The solution lies within the Distributed Spacecraft Autonomy (DSA) project, led by NASA’s Ames Research Center in California’s Silicon Valley, which tests how shared autonomy across distributed spacecraft missions makes spacecraft swarms more capable of self-sufficient research and maintenance by making decisions and adapting to changes with less human intervention. 
      Adding autonomy to satellites makes them capable of providing services without waiting for commands from ground operators. Distributing the autonomy across multiple satellites, operating like a swarm, gives the spacecraft a “shared brain” to accomplish goals they couldn’t achieve alone. 
      The DSA software, built by NASA researchers, provides the swarm with a task list, and shares each spacecraft’s distinct perspective – what it can observe, what its priorities are – and integrates those perspectives into the best plan of action for the whole swarm. That plan is supported by decision trees and mathematical models that help the swarm decide what action to take after a command is completed, how to respond to a change, or address a problem. 
      Sharing the Workload
      The first in-space demonstration of DSA began onboard the Starling spacecraft swarm, a group of four small satellites, demonstrating various swarm technologies. Operating since July 2023, the Starling mission continues providing a testing and validation platform for autonomous swarm operations. The swarm first used DSA to optimize scientific observations, deciding what to observe without pre-programmed instructions. These autonomous observations led to measurements that could have been missed if an operator had to individually instruct each satellite. 
      The Starling swarm measured the electron content of plasma between each spacecraft and GPS satellites to capture rapidly changing phenomena in Earth’s ionosphere – where Earth’s atmosphere meets space. The DSA software allowed the swarm to independently decide what to study and how to spread the workload across the four spacecraft. 
      Because each Starling spacecraft operates as an independent member within the swarm, if one swarm member was unable to accomplish its work, the other three swarm members could react and complete the mission’s goals. 
      The Starling 1.0 demonstration achieved several firsts, including the first fully distributed autonomous operation of multiple spacecraft, the first use of space-to-space communications to autonomously share status information between multiple spacecraft, the first demonstration of fully distributed reactive operations onboard multiple spacecraft, the first use of a general-purpose automated reasoning system onboard a spacecraft, and the first use of fully distributed automated planning onboard multiple spacecraft. These achievements laid the groundwork for Starling 1.5+, an ongoing continuation of the satellite swarm’s mission using DSA.  
      Advanced testing of DSA onboard Starling shows that distributed autonomy in spacecraft swarms can improve efficiencies while reducing the workload on human operators.Credit: NASA/Daniel Rutter A Helping Hand in Orbit 
      After DSA’s successful demonstration on Starling 1.0, the team began exploring additional opportunities to use the software to support satellite swarm health and efficiency. Continued testing of DSA on Starling’s extended mission included PLEXIL (Plan Execution Interchange Language), a NASA-developed programming language designed for reliable and flexible automation of complex spacecraft operations. 
      Onboard Starling, the PLEXIL application demonstrated autonomous maintenance, allowing the swarm to manage normal spacecraft operations, correct issues, or distribute software updates across individual spacecraft.  
      Enhanced autonomy makes swarm operation in deep space feasible – instead of requiring spacecraft to communicate back and forth between their distant location and Earth, which can take minutes or hours depending on distance, the PLEXIL-enabled DSA software gives the swarm the ability to make decisions collaboratively to optimize their mission and reduce workloads. 
      Simulated Lunar Swarming 
      To understand the scalability of DSA, the team used ground-based flight computers to simulate a lunar swarm of virtual small spacecraft. The computers simulated a swarm that provides position, navigation, and timing services on the Moon, similar to GPS services on Earth, which rely on a network of satellites to pinpoint locations. 
      The DSA team ran nearly one hundred tests over two years, demonstrating swarms of different sizes at high and low lunar orbits. The lessons learned from those early tests laid the groundwork for additional scalability studies. The second round of testing, set to begin in 2026, will demonstrate even larger swarms, using flight computers that could later go into orbit with DSA software onboard. 
      The Future of Spacecraft Swarms 
      Orbital and simulated tests of DSA are a launchpad to increased use of distributed autonomy across spacecraft swarms. Developing and proving these technologies increases efficiency, decreases costs, and enhances NASA’s capabilities opening the door to autonomous spacecraft swarms supporting missions to the Moon, Mars, and beyond.  
      Milestones:
      October 2018: DSA project development begins. April 2020: Lunar position, navigation, and timing (LPNT) simulation demonstration development begins. July 2023: DSA launches onboard the Starling spacecraft swarm. March 2024: DSA experiments onboard Starling reach the necessary criteria for success. July 2024: DSA software development begins for the Starling 1.5+ mission extension. September 2024: LPNT simulation demonstration concludes successfully. October 2024: DSA’s extended mission as part of Starling 1.5+ begins. Partners:
      NASA Ames leads the Distributed Spacecraft Autonomy and Starling projects. NASA’s Game Changing Development program within the agency’s Space Technology Mission Directorate provided funding for the DSA experiment. NASA’s Small Spacecraft Technology program within the Space Technology Mission Directorate funds and manages the Starling mission and the DSA project.  
      Learn More:
      Satellite Swarms for Science ‘Grow up’ at NASA Ames (NASA Story, June 2023) NASA’s Starling Mission Sending Swarm of Satellites into Orbit (NASA Story, July 2023) Swarming for Success: Starling Completes Primary Mission (NASA Story, May 2024) NASA Demonstrates Software ‘Brains’ Shared Across Satellite Swarms (NASA Story, February 2025) For researchers:
      Distributed Spacecraft Autonomy Mission Page Distributed Spacecraft Autonomy TechPort Project Page Starling Mission Page For media:
      Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
      View the full article
    • By NASA
      Before astronauts venture around the Moon on Artemis II, the agency’s first crewed mission to the Moon since Apollo, Mark Cavanaugh is helping make sure the Orion spacecraft is safe and space-ready for the journey ahead.  
      As an Orion integration lead at NASA’s Johnson Space Center in Houston, he ensures the spacecraft’s critical systems— in both the U.S.-built crew module and European-built service module—come together safely and seamlessly. 
      Mark Cavanaugh stands in front of a mockup of the Orion spacecraft inside the Space Vehicle Mockup Facility at NASA’s Johnson Space Center in Houston.NASA/Robert Markowitz With nearly a decade of experience at NASA, Cavanaugh currently works within the Orion Crew and Service Module Office at Johnson. He oversees the technical integration of the European Service Module, which provides power, propulsion, and life support to Orion during Artemis missions to the Moon. His work includes aligning and verifying essential systems to keeping the crew alive, including oxygen, nitrogen, water storage, temperature regulation, and spacecraft structures. 
      In addition to his integration work, Cavanaugh is an Orion Mission Evaluation Room (MER) manager. The MER is the engineering nerve center during Artemis flights, responsible for real-time monitoring of the Orion spacecraft and real-time decision-making. From prelaunch to splashdown, Cavanaugh will lead a team of engineers who track vehicle health and status, troubleshoot anomalies, and communicate directly with the flight director to ensure the mission remains safe and on track. 
      Mark Cavanaugh supports an Artemis I launch attempt from the Passive Thermal Control System console on Aug. 29, 2022, in the Orion Mission Evaluation Room at NASA’s Johnson Space Center.NASA/Josh Valcarcel Cavanaugh’s passion for space exploration began early. “I’ve wanted to be an aerospace engineer since I was six years old,” he said. “My uncle, who is also an aerospace engineer, used to take me to wind tunnel tests and flight museums as a kid.” 
      That passion only deepened after a fifth-grade trip from Philadelphia to Houston with his grandfather. “My dream of working at NASA Johnson started when I visited the center for the first time,” he said. “Going from being a fifth grader riding the tram on the tour to contributing to the great work done at Johnson has been truly incredible.” 
      Turning that childhood dream into reality did not come with a straight path. Cavanaugh graduated from Pennsylvania State University in 2011, the same year NASA’s Space Shuttle Program ended. With jobs in the space industry in short supply, he took a position with Boeing in Houston, working on the International Space Station’s Passive Thermal Control System. He later supported thermal teams for the Artemis Moon rocket called the Space Launch System, and the Starliner spacecraft that flew astronauts Butch Wilmore and Suni Williams during their Boeing Crew Flight Test mission, before a mentor flagged a NASA job posting that turned out to be the perfect fit. 
      He joined NASA as the deputy system manager for Orion’s Passive Thermal Control System, eventually stepping into his current leadership role on the broader Orion integration team. “I’ve been very lucky to work with some of the best and most supportive teammates you can imagine,” he said. 
      Mark Cavanaugh with his mother, Jennifer, in front of the Artemis I Orion spacecraft following the thermal vacuum test at the Space Environments Complex at NASA’s Neil Armstrong Test Facility in Sandusky, Ohio. Cavanaugh says collaboration and empathy were key to solving challenges along the way. “I’ve learned to look at things from the other person’s perspective,” he said. “We’re all working toward the same incredible goal, even if we don’t always agree. That mindset helps keep things constructive and prevents misunderstandings.” 
      He also emphasizes the importance of creative problem-solving. “For me, overcoming technical challenges comes down to seeking different perspectives, questioning assumptions, and not being afraid to try something new—even if it sounds a little ridiculous at first.” 
      Mark Cavanaugh riding his motorcycle on the Circuit of the Americas track in Austin, Texas. Outside of work, Cavanaugh fuels his love of speed and precision by riding one of his three motorcycles. He has even taken laps at the Circuit of the Americas track in Austin, Texas.  
      When he is not on the track or in the control room, Cavanaugh gives back through student outreach. “The thing I always stress when I talk to students is that nothing is impossible,” he said. “I never thought I’d get to work in the space industry, let alone at NASA. But I stayed open to opportunities—even the ones that didn’t match what I originally imagined for myself.” 
      Explore More
      5 min read Chief Training Officer Teresa Sindelar Touches the Future of Human Spaceflight
      Article 3 weeks ago 3 min read Aaisha Ali: From Marine Biology to the Artemis Control Room 
      Article 4 weeks ago 2 min read I Am Artemis: Joe Pavicic
      Article 4 weeks ago View the full article
    • By NASA
      NASA’s TRACERS (Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites) mission launched at 2:13 p.m. EDT atop a SpaceX Falcon 9 rocket at Space Launch Complex 4 East at Vandenberg Space Force Base in California. Credit: SpaceX NASA’s newest mission, TRACERS, soon will begin studying how Earth’s magnetic shield protects our planet from the effects of space weather. Short for Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites, the twin TRACERS spacecraft lifted off at 11:13 a.m. PDT (2:13 p.m. EDT) Wednesday aboard a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California.
      “NASA is proud to launch TRACERS to demonstrate and expand American preeminence in space science research and technology,” said acting NASA Administrator Sean Duffy. “The TRACERS satellites will move us forward in decoding space weather and further our understanding of the connection between Earth and the Sun. This mission will yield breakthroughs that will advance our pursuit of the Moon, and subsequently, Mars.”
      The twin satellites will fly one behind the other – following as closely as 10 seconds apart over the same location – and will take a record-breaking 3,000 measurements in one year to build a step-by-step picture of how magnetic reconnection changes over time.
      Riding along with TRACERS aboard the Falcon 9 were NASA’s Athena EPIC (Economical Payload Integration Cost), PExT (Polylingual Experimental Terminal), and REAL (Relativistic Electron Atmospheric Loss) missions – three small satellites to demonstrate new technologies and gather scientific data. These three missions were successfully deployed, and mission controllers will work to contact them over the coming hours and days.
      Ground controllers for the TRACERS mission established communications with the second of the two spacecraft at 3:43 p.m. PDT (6:43 p.m. EDT), about 3 hours after it separated from the rocket. During the next four weeks, TRACERS will undergo a commissioning period during which mission controllers will check out their instruments and systems.
      Once cleared, the twin satellites will begin their 12-month prime mission to study a process called magnetic reconnection, answering key questions about how it shapes the impacts of the Sun and space weather on our daily lives.
      “NASA’s heliophysics fleet helps to safeguard humanity’s home in space and understand the influence of our closest star, the Sun,” said Joe Westlake, heliophysics division director at NASA Headquarters in Washington. “By adding TRACERS to that fleet, we will gain a better understanding of those impacts right here at Earth.”
      The two TRACERS spacecraft will orbit through an open region in Earth’s magnetic field near the North Pole, called the polar cusp. Here, TRACERS will investigate explosive magnetic events that happen when the Sun’s magnetic field – carried through space in a stream of solar material called the solar wind – collides with Earth’s magnetic field. This collision creates a buildup of energy that causes magnetic reconnection, when magnetic field lines snap and explosively realign, flinging away nearby particles at high speeds.
      Flying through the polar cusp allows the TRACERS satellites to study the results of these magnetic explosions, measuring charged particles that race down into Earth’s atmosphere and collide with atmospheric gases – giving scientist the tools to reconstruct exactly how changes in the incoming solar wind affect how, and how quickly, energy and particles are coupled into near-Earth space.
      “The successful launch of TRACERS is a tribute to many years of work by an excellent team,” said David Miles, TRACERS principal investigator at the University of Iowa. “TRACERS is set to transform our understanding of Earth’s magnetosphere. We’re excited to explore the dynamic processes driving space weather.”
      Small Satellites Along for Ride
      Athena EPIC is a pathfinder mission that will demonstrate NASA’s use of an innovative and configurable commercial SmallSat architecture to improve flexibility of payload designs, reduce launch schedule, and reduce overall costs in future missions, as well as the benefits of working collaboratively with federal partners. In addition to this demonstration for NASA, once the Athena EPIC satellite completes its two-week commissioning period, the mission will spend the next 12 months taking measurements of outgoing longwave radiation from Earth.
      The PExT demonstration will test interoperability between commercial and government communication networks for the first time by demonstrating a wideband polylingual terminal in low Earth orbit. This terminal will use software-defined radios to jump between government and commercial networks, similar to cell phones roaming between providers on Earth. These terminals could allow future missions to switch seamlessly between networks and access new commercial services throughout its lifecycle in space.
      The REAL mission is a CubeSat that will investigate how energetic electrons are scattered out of the Van Allen radiation belts and into Earth’s atmosphere. Shaped like concentric rings high above Earth’s equator, the Van Allen belts are composed of a mix of high-energy electrons and protons that are trapped in place by Earth’s magnetic field. Studying electrons and their interactions, REAL aims to improve our understanding of these energetic particles that can damage spacecraft and imperil astronauts who pass through them. 
      The TRACERS mission is led by David Miles at the University of Iowa with support from the Southwest Research Institute in San Antonio, Texas. NASA’s Heliophysics Explorers Program Office at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, manages the mission for the Heliophysics Division at NASA Headquarters in Washington. The University of Iowa, Southwest Research Institute, University of California, Los Angeles, and the University of California, Berkeley, all lead instruments on TRACERS.
      The Athena EPIC mission is led by NASA’s Langley Research Center in Hampton, Virginia, and is a partnership between National Oceanic and Atmospheric Administration, U.S. Space Force, and NovaWurks. Athena EPIC’s launch is supported by launch integrator SEOPS. The PExT demonstration is managed by NASA’s SCaN (Space Communications and Navigation) program in partnership with Johns Hopkins Applied Physics Laboratory, with launch support by York Space Systems. The REAL project is led by Dartmouth College in Hanover, New Hampshire, and is a partnership between Johns Hopkins Applied Physics Laboratory, Montana State University, and Boston University. Sponsored by NASA’s Heliophysics Division and CubeSat Launch Initiative, it was included through launch integrator Maverick Space Systems.
      NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida, manages the VADR (Venture-class Acquisition of Dedicated and Rideshare) contract.
      To learn more about TRACERS, visit:
      https://nasa.gov/tracers
      -end-
      Abbey Interrante / Karen Fox
      Headquarters, Washington
      301-201-0124 / 202-358-1600
      abbey.a.interrante@nasa.gov / karen.c.fox@nasa.gov
      Sarah Frazier
      Goddard Space Flight Center, Greenbelt, Maryland
      202-853-7191
      sarah.frazier@nasa.gov
      Share
      Details
      Last Updated Jul 23, 2025 LocationNASA Headquarters Related Terms
      TRACERS Earth Science Science Mission Directorate View the full article
    • By NASA
      6 Min Read NASA’s TRACERS Studies Explosive Process in Earth’s Magnetic Shield
      High above us, particles from the Sun hurtle toward Earth, colliding with the upper atmosphere and creating powerful explosions in a murky process called magnetic reconnection. A single magnetic reconnection event can release as much energy as the entire United States uses in a day.
      NASA’s new TRACERS (Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites) mission will study magnetic reconnection, answering key questions about how it shapes the impacts of the Sun and space weather on our daily lives.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      NASA’s TRACERS mission, or the Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites, will fly in low Earth orbit through the polar cusps, funnel-shaped holes in the magnetic field, to study magnetic reconnection and its effects in Earth’s atmosphere. NASA’s Goddard Space Flight Center The TRACERS spacecraft are slated to launch no earlier than late July 2025 aboard a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California. The two TRACERS spacecraft will orbit Earth to study how the solar wind — a continuous outpouring of electrically charged particles from the Sun — interacts with Earth’s magnetic shield, the magnetosphere.
      What Is Magnetic Reconnection?
      As solar wind flows out from the Sun, it carries the Sun’s embedded magnetic field out across the solar system. Reaching speeds over one million miles per hour, this soup of charged particles and magnetic field plows into planets in its path.
      “Earth’s magnetosphere acts as a protective bubble that deflects the brunt of the solar wind’s force. You can think of it as a bar magnet that’s rotating and floating around in space,” said John Dorelli, TRACERS mission science lead at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “As the solar wind collides with Earth’s magnetic field, this interaction builds up energy that can cause the magnetic field lines to snap and explosively fling away nearby particles at high speeds — this is magnetic reconnection.”
      Openings in Earth’s magnetic field at the North and South Poles, called polar cusps, act as funnels allowing charged particles to stream down towards Earth and collide with atmospheric gases. These phenomena are pieces of the space weather system that is in constant motion around our planet — whose impacts range from breathtaking auroras to disruption of communications systems and power grids. In May 2024, Earth experienced the strongest geomagnetic storm in over 20 years, which affected high-voltage power lines and transformers, forced trans-Atlantic flights to change course, and caused GPS-guided tractors to veer off-course.
      How Will TRACERS Study Magnetic Reconnection?
      The TRACERS mission’s twin satellites, each a bit larger than a washing machine, will fly in tandem, one behind the other, in a relatively low orbit about 360 miles above Earth. Traveling over 16,000 mph, each satellite hosts a suite of instruments to measure different aspects of extremely hot, ionized gas called plasma and how it interacts with Earth’s magnetosphere.
      An artist’s concept of the twin TRACERS satellites in orbit above Earth. NASA’s Goddard Space Flight Center The satellites will focus where Earth’s magnetic field dips down to the ground at the North polar cusp. By placing the twin TRACERS satellites in a Sun-synchronous orbit, they always pass through Earth’s dayside polar cusp, studying thousands of reconnection events at these concentrated areas.
      This will build a step-by-step picture of how magnetic reconnection changes over time and from Earth’s dayside to its nightside.
      NASA’s TRICE-2 mission also studied magnetic reconnection near Earth, but with a pair of sounding rockets launched into the northern polar cusp over the Norwegian Sea in 2018.
      “The TRICE mission took great data. It took a snapshot of the Earth system in one state. It proved that these instruments could make this kind of measurement and achieve this kind of science,” said David Miles, TRACERS principal investigator at the University of Iowa. “But the system’s more complicated than that. The TRACERS mission demonstrates how you can use multi-spacecraft technology to get a picture of how things are moving and evolving.”
      The TRACERS mission demonstrates how you can use multi-spacecraft technology to get a picture of how things are moving and evolving.
      DAVID MILES
      TRACERS principal investigator, University of Iowa
      Since previous missions could only take one measurement of an event per launch, too many changes in the region prevented forming a full picture. Following each other closely in orbit, the twin TRACERS satellites will provide multiple snapshots of the same area in rapid succession, spaced as closely as 10 seconds apart from each other, reaching a record-breaking 3,000 measurements in one year. These snapshots will build a picture of how the whole Earth system behaves in reaction to space weather, allowing scientists to better understand how to predict space weather in the magnetosphere.
      Working Across Missions in Solar Harmony
      The TRACERS mission will collaborate with other NASA heliophysics missions, which are strategically placed near Earth and across the solar system. At the Sun, NASA’s Parker Solar Probe closely observes our closest star, including magnetic reconnection there and its role in heating and accelerating the solar wind that drives the reconnection events investigated by TRACERS.
      Data from recently launched NASA missions, EZIE (Electrojet Zeeman Imaging Explorer), studying electrical currents at Earth’s nightside, and PUNCH (Polarimeter to Unify the Corona and Heliosphere) studying the solar wind and interactions in Earth’s atmosphere, can be combined with observations from TRACERS. With research from these missions, scientists will be able to get a more complete understanding of how and when Earth’s protective magnetic shield can suddenly connect with solar wind, allowing the Sun’s material into Earth’s system.
      “The TRACERS mission will be an important addition to NASA’s heliophysics fleet.” said Reinhard Friedel, TRACERS program scientist at NASA Headquarters in Washington. “The missions in the fleet working together increase understanding of our closest star to improve our ability to understand, predict, and prepare for space weather impacts on humans and technology in space.”
      The TRACERS mission is led by David Miles at the University of Iowa with support from the Southwest Research Institute in San Antonio, Texas. NASA’s Heliophysics Explorers Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the mission for the agency’s Heliophysics Division at NASA Headquarters in Washington. The University of Iowa, Southwest Research Institute, University of California, Los Angeles, and the University of California, Berkeley, all lead instruments on TRACERS that study changes in the magnetic field and electric field. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida, manages the VADR (Venture-class Acquisition of Dedicated and Rideshare) contract.
      by Desiree Apodaca
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Header Image:
      An artist’s concept of the TRACERS mission, which will help research magnetic reconnection and its effects in Earth’s atmosphere.
      Credits: Andy Kale
      Share








      Details
      Last Updated Jul 16, 2025 Related Terms
      Goddard Space Flight Center Earth’s Magnetic Field Heliophysics Heliophysics Division The Sun The Sun & Solar Physics TRACERS Explore More
      4 min read Linking Satellite Data and Community Knowledge to Advance Alaskan Snow Science


      Article


      2 days ago
      2 min read Hubble Snaps Galaxy Cluster’s Portrait


      Article


      5 days ago
      7 min read NASA’s Parker Solar Probe Snaps Closest-Ever Images to Sun
      On its record-breaking pass by the Sun late last year, NASA’s Parker Solar Probe captured…


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...