Members Can Post Anonymously On This Site
Alpha: Second Space Station mission for ESA’s Thomas Pesquet begins
-
Similar Topics
-
By NASA
2 Min Read NASA Seeks Commercial Feedback on Space Communication Solutions
An illustration of a commercial space relay ecosystem. Credits: NASA / Morgan Johnson NASA is seeking information from U.S. and international companies about Earth proximity relay communication and navigation capabilities as the agency aims to use private industry satellite communications services for emerging agency science missions.
“As part of NASA’s Communications Services Project, the agency is working with private industry to solve challenges for future exploration,” said Kevin Coggins, deputy associate administrator of NASA’s SCaN Program. “Through this effort, NASA missions will have a greater ability to command spacecraft, resolve issues in flight, and bring home more data and scientific discoveries collected across the solar system.”
In November 2024, NASA announced the TDRS (Tracking and Data Relay Satellite) system, the agency’s network of satellites relaying communications from the International Space Station, ground controls on Earth, and spacecraft, will support only existing missions.
NASA, as one of many customers, will obtain commercial satellite services rather than owning and operating a replacement for the existing satellite system. As NASA transitions to commercial relay services, the agency will leverage commercial capabilities to ensure support for future missions and stimulate private investment into the Earth proximity region. Commercial service offerings could become available to NASA missions as early as 2028 and will continue to be demonstrated and validated through 2031.
NASA’s SCaN issued a Request for Information on May 30. Responses are due by 5 p.m. EDT on Friday, July 11.
NASA’s SCaN Program serves as the management office for the agency’s space communications and navigation. More than 100 NASA and non-NASA missions rely on SCaN’s two networks, the Near Space Network and the Deep Space Network, to support astronauts aboard the International Space Station and future Artemis missions, monitor Earth’s weather, support lunar exploration, and uncover the solar system and beyond.
Learn more about NASA’s SCaN Program at:
https://www.nasa.gov/scan
Share
Details
Last Updated Jun 16, 2025 EditorJimi RussellContactMolly KearnsLocationGlenn Research Center Related Terms
Commercial Space General Glenn Research Center The Future of Commercial Space Tracking and Data Relay Satellite (TDRS) Keep Exploring Discover More Topics From NASA
Communicating with Missions
Communications Services Project
Commercial Space News
Near Space Network
View the full article
-
By NASA
Teams with NASA and the Department of Defense (DoD) rehearse recovery procedures for a launch pad abort scenario off the coast of Florida near the agency’s Kennedy Space Center on Wednesday, June 11, 2025. NASA/Isaac Watson NASA and the Department of Defense (DoD) teamed up June 11 and 12 to simulate emergency procedures they would use to rescue the Artemis II crew in the event of a launch emergency. The simulations, which took place off the coast of Florida and were supported by launch and flight control teams, are preparing NASA to send four astronauts around the Moon and back next year as part of the agency’s first crewed Artemis mission.
The team rehearsed procedures they would use to rescue the crew during an abort of NASA’s Orion spacecraft while the SLS (Space Launch System) rocket is still on the launch pad, as well as during ascent to space. A set of test mannequins and a representative version of Orion called the Crew Module Test Article, were used during the tests.
The launch team at NASA’s Kennedy Space Center in Florida, flight controllers in mission control at the agency’s Johnson Space Center in Houston, as well as the mission management team, all worked together, exercising their integrated procedures for these emergency scenarios.
Teams with NASA and the Department of Defense (DoD) rehearse recovery procedures for a launch pad abort scenario off the coast of Florida near the agency’s Kennedy Space Center on Wednesday, June 11, 2025.NASA/Isaac Watson “Part of preparing to send humans to the Moon is ensuring our teams are ready for any scenario on launch day,” said Lakiesha Hawkins, NASA’s assistant deputy associate administrator for the Moon to Mars Program, and who also is chair of the mission management team for Artemis II. “We’re getting closer to our bold mission to send four astronauts around the Moon, and our integrated testing helps ensure we’re ready to bring them home in any scenario.”
The launch pad abort scenario was up first. The teams conducted a normal launch countdown before declaring an abort before the rocket was scheduled to launch. During a real pad emergency, Orion’s launch abort system would propel Orion and its crew a safe distance away and orient it for splashdown before the capsule’s parachutes would then deploy ahead of a safe splashdown off the coast of Florida.
Teams with NASA and the Department of Defense (DoD) rehearse recovery procedures for a launch pad abort scenario off the coast of Florida near the agency’s Kennedy Space Center on Wednesday, June 11, 2025. NASA/Isaac Watson For the simulated splashdown, the test Orion with mannequins aboard was placed in the water five miles east of Kennedy. Once the launch team made the simulated pad abort call, two Navy helicopters carrying U.S. Air Force pararescuers departed nearby Patrick Space Force Base. The rescuers jumped into the water with unique DoD and NASA rescue equipment to safely approach the spacecraft, retrieve the mannequin crew, and transport them for medical care in the helicopters, just as they would do in the event of an actual pad abort during the Artemis II mission.
The next day focused on an abort scenario during ascent to space.
The Artemis recovery team set up another simulation at sea 12 miles east of Kennedy, using the Orion crew module test article and mannequins. With launch and flight control teams supporting, as was the Artemis II crew inside a simulator at Johnson, the rescue team sprung into action after receiving the simulated ascent abort call and began rescue procedures using a C-17 aircraft and U.S. Air Force pararescuers. Upon reaching the capsule, the rescuers jumped from the C-17 with DoD and NASA unique rescue gear. In an actual ascent abort, Orion would separate from the rocket in milliseconds to safely get away prior to deploying parachutes and splashing down.
Teams with NASA and the Department of Defense (DoD) rehearse recovery procedures for an ascent abort scenario off the coast of Florida near the agency’s Kennedy Space Center on Thursday, June 12, 2025. NASA/Isaac Watson Rescue procedures are similar to those used in the Underway Recovery Test conducted off the California coast in March. This demonstration ended with opening the hatch and extracting the mannequins from the capsule, so teams stopped without completing the helicopter transportation that would be used during a real rescue.
Exercising procedures for extreme scenarios is part of NASA’s work to execute its mission and keep the crew safe. Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all.
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Instruments in space are helping scientists map wastewater plumes flowing into the Pacific Ocean from the heavily polluted Tijuana River, seen here with the San Diego sky-line to the north. NOAA Proof-of-concept results from the mouth of the Tijuana River in San Diego County show how an instrument called EMIT could aid wastewater detection.
An instrument built at NASA’s Jet Propulsion Laboratory to map minerals on Earth is now revealing clues about water quality. A recent study found that EMIT (Earth Surface Mineral Dust Source Investigation) was able to identify signs of sewage in the water at a Southern California beach.
The authors of the study examined a large wastewater plume at the mouth of the Tijuana River, south of Imperial Beach near San Diego. Every year, millions of gallons of treated and untreated sewage enter the river, which carries pollutants through communities and a national reserve on the U.S.-Mexico border before emptying into the Pacific Ocean. Contaminated coastal waters have been known to impact human health — from beachgoers to U.S. Navy trainees — and harm marine ecosystems, fisheries, and wildlife.
For decades scientists have tracked water quality issues like harmful algal blooms using satellite instruments that analyze ocean color. Shades that range from vibrant red to bright green can reveal the presence of algae and phytoplankton. But other pollutants and harmful bacteria are more difficult to monitor because they’re harder to distinguish with traditional satellite sensors.
A plume spreads out to sea in this image captured off San Diego by the Sentinel-2 satellite on March 24, 2023. Both a spectroradiometer used to analyze water samples (yellow star) and NASA’s EMIT identified in the plume signs of a type of bacterium that can sicken humans and animals.SDSU/Eva Scrivner That’s where EMIT comes in. NASA’s hyperspectral instrument orbits Earth aboard the International Space Station, observing sunlight reflecting off the planet below. Its advanced optical components split the visible and infrared wavelengths into hundreds of color bands. By analyzing each satellite scene pixel by pixel at finer spatial resolution, scientists can discern what molecules are present based on their unique spectral “fingerprint.”
Scientists compared EMIT’s observations of the Tijuana River plume with water samples they tested on the ground. Both EMIT and the ground-based instruments detected a spectral fingerprint pointing to phycocyanin, a pigment in cyanobacteria, an organism that can sicken humans and animals that ingest or inhale it.
‘Smoking Gun’
Many beachgoers are already familiar with online water-quality dashboards, which often rely on samples collected in the field, said Christine Lee, a scientist at JPL in Southern California and a coauthor of the study. She noted the potential for EMIT to complement these efforts.
“From orbit you are able to look down and see that a wastewater plume is extending into places you haven’t sampled,” Lee said. “It’s like a diagnostic at the doctor’s office that tells you, ‘Hey, let’s take a closer look at this.’”
Lead author Eva Scrivner, a doctoral student at the University of Connecticut, said that the findings “show a ‘smoking gun’ of sorts for wastewater in the Tijuana River plume.” Scrivner, who led the study while at San Diego State University, added that EMIT could be useful for filling data gaps around intensely polluted sites where traditional water sampling takes a lot of time and money.
EMIT’s Many Uses
The technology behind EMIT is called imaging spectroscopy, which was pioneered at JPL in the 1980s. Imaging spectrometers developed at JPL over the decades have been used to support areas ranging from agriculture to forest health and firefighting.
When EMIT was launched in July 2022, it was solely aimed at mapping minerals and dust in Earth’s desert regions. That same sensitivity enabled it to spot the phycocyanin pigments off the California coast.
Scrivner hadn’t anticipated that an instrument initially devoted to exploring land could reveal insights about water. “The fact that EMIT’s findings over the coast are consistent with measurements in the field is compelling to water scientists,” she said. “It’s really exciting.”
To learn more about EMIT, visit:
https://earth.jpl.nasa.gov/emit/
News Media Contacts
Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
626-379-6874 / 818-354-0307
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
Written by Sally Younger
2025-078
Share
Details
Last Updated Jun 12, 2025 Related Terms
EMIT (Earth Surface Mineral Dust Source Investigation) Earth Earth Science Technology Office Human Dimensions International Space Station (ISS) Oceans Water on Earth Explore More
3 min read Studying Storms from Space Station
Article 4 hours ago 4 min read Welcome Home, Expedition 72 Crew!
Article 21 hours ago 6 min read NASA’s Ready-to-Use Dataset Details Land Motion Across North America
Article 6 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
3 Min Read Studying Storms from Space Station
An artist’s impression of a blue jet as observed from the space station. Credits: Mount Visual/University of Bergen/DTU Science in Space June 2025
Scientists use instruments on the International Space Station to study phenomena in Earth’s ionosphere or upper atmosphere including thunderstorms, lightning, and transient luminous events (TLEs). TLEs take many forms, including blue jets, discharges that grow upward into the stratosphere from cloud tops, and colorful bursts of energy above storms called Stratospheric/Mesospheric Perturbations Resulting from Intense Thunderstorm Electrification or SPRITES.
Red SPRITES are visible above a line of thunderstorms off the coast of South Africa.NASA TLEs can disrupt communication systems on the ground and pose a threat to aircraft and spacecraft. Understanding these phenomena also could improve atmospheric models and weather predictions. Because these events occur well above the altitudes of normal lightning and storm clouds, they are difficult to observe from the ground. ASIM, an investigation from ESA (European Space Agency), uses a monitor on the exterior of the space station to collect data on TLEs. These data are providing insights into how thunderstorms affect Earth’s atmosphere and helping to improve atmospheric models used for weather and climate predictions.
ELVES and coronas
A study based on ASIM data confirmed that lightning-like discharges at the tops of thunderstorms can create another type of TLE, massive glowing rings in the upper atmosphere known as Emissions of Light and VLF Perturbations from EMP events, or ELVES. This experiment showed that these discharges influence the ionosphere and helped scientists learn more about Earth and space weather.
ASIM-based research also described the physical properties of different types of corona discharges in thunderstorm clouds. Corona discharges are linked to powerful but short-lived electrical bursts near the tops of clouds. The data provide a reference to support further investigation into the mechanisms behind these discharges and their role in the initiation of lightning, an important problem in lightning physics.
Other researchers used ASIM measurements along with ground-based electric field measurements to determine the height of a blue discharge from a thundercloud.
Cloud close-ups
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Lightning on Earth as captured from the space station.NASA Another ESA investigation, Thor-Davis, evaluated use of a special camera to photograph high-altitude thunderstorms through the windows of the space station’s cupola. The camera can observe thunderstorm electrical activity at up to 100,000 frames per second and could be a useful tool for space-based observation of severe electrical storms and other applications.
Seeing storms from satellites
Deployment of the Light-1 CubeSat from the space station.NASA The JAXA (Japan Aerospace Exploration Agency) investigation Light-1 CubeSat used detectors integrated into a compact satellite to observe terrestrial gamma-ray flashes in the upper atmosphere. These high intensity, energetic events can expose aircraft, aircraft electronics, and passengers to excessive radiation. Researchers are planning to compare data collected from the mission with ground-based observations to provide more comprehensive maps of lightning and thunderstorms in the atmosphere. Small satellite detectors could cost less and be manufactured in less time than other approaches.
Keep Exploring Discover More Topics From NASA
Space Station Research and Technology
Space Station Research Results
Latest News from Space Station Research
Station Researcher’s Guide Series
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s F-15D research aircraft conducts a calibration flight of a shock-sensing probe near NASA’s Armstrong Flight Research Center in Edwards, California. The shock-sensing probe is designed to measure the signature and strength of shock waves in flight. The probe was validated during dual F-15 flights and will be flown behind NASA’s X-59 to measure small pressure changes caused by shock waves in support of the agency’s Quesst mission.NASA/Jim Ross High over the Mojave Desert, two NASA F-15 research jets made a series of flights throughout May to validate tools designed to measure and record the shock waves that will be produced by the agency’s X-59 quiet supersonic experimental aircraft.
The F-15s, carrying the recording tools, flew faster than the speed of sound, matching the conditions the X-59 is expected to fly. The X-59 is the centerpiece of NASA’s Quesst mission to gather data that can help lead to quiet commercial supersonic flight over land.
The team behind the successful test flight series operates under the Schlieren, Airborne Measurements, and Range Operations for Quesst (SCHAMROQ) project at NASA’s Armstrong Flight Research Center in Edwards, California. There, they developed tools that will measure and visualize the X-59’s unique shock waves when it flies at Mach 1.4 and altitudes above 50,000 feet. For a typical supersonic aircraft, those shock waves would result in a sonic boom. But thanks to the X-59’s design and technologies, it will generate just a quiet thump.
Cheng Moua, engineering project manager for SCHAMROQ, described the validation flight campaign as “a graduation exercise – it brings all the pieces together in their final configuration and proves that they will work.”
NASA began to develop the tools years ago, anchored by the arrival of one of the two F-15s – an F-15D from the U.S. Air Force – a tactical aircraft delivered without research instrumentation.
“It showed up as a former war-fighting machine without a research-capable instrumentation system – no telemetry, no HD video, no data recording,” Cheng said. “Now it’s a fully instrumented research platform.”
The team used both F-15s to validate three key tools:
A shock wave-measuring device called a near-field shock-sensing probe A guidance capability known as an Airborne Location Integrating Geospatial Navigation System An Airborne Schlieren Photography System that will allow the capture of images that render visible the density changes in air caused by the X-59 Before the F-15D’s arrival, Armstrong relied on the second F-15 flown during this campaign – an F-15B typically used to test equipment, train pilots, and support other flight projects. The SCHAMROQ project used the two aircraft to successfully complete “dual ship flights,” a series of flight tests using two aircraft simultaneously. Both aircraft flew in formation carrying near-field shock-sensing probes and collected data from one another to test the probes and validate the tools under real-world conditions. The data help confirm how shock waves form and evolve during flight.
NASA Photographer Carla Thomas holds the Airborne Schlieren Photography System (ASPS), aiming it out the window in flight. The ASPS uses a photographic method called schlieren imaging, capable of visualizing changes in air density and revealing shock waves and air flow patterns around moving objects. The system is one of several tools validated during recent dual F-15 flights at NASA’s Armstrong Flight Research Center in Edwards, California, in support of NASA’s Quesst mission, ahead of the X-59’s first flight. NASA/Carla Thomas Keeping Things ALIGNed
For the Quesst mission, the F-15D will lead data-gathering efforts using the onboard probe, while the F-15B will serve as the backup. When flown behind the X-59, the probe will help measure small pressure changes caused by the shock waves and validate predictions made years ago when the plane’s design was first created.
The schlieren photography systems aboard the F-15s will provide Quesst researchers with crucial data. Other tools, like computer simulations that predict airflow and wind tunnel tests are helpful, but schlieren imagery shows real-world airflow, especially in tricky zones like the engine and air inlet.
For that system to work correctly, the two aircraft will need to be precisely positioned during the test flights. Their pilots will be using a NASA-developed software tool called the Airborne Location Integrating Geospatial Navigation System (ALIGNS).
“ALIGNS acts as a guidance system for the pilots,” said Troy Robillos, a NASA researcher who led development of ALIGNS. “It shows them where to position the aircraft to either probe a shock wave at a specific point or to get into the correct geometry for schlieren photography.”
The schlieren system involves a handheld high-speed camera with a telescopic lens that captures hundreds of frames per second and visualizes changes in air density – but only if it can use the sun as a backdrop.
Two NASA F-15 aircraft sit on the ramp at NASA’s Armstrong Flight Research Center, in Edwards, California, ahead of dual F-15 flights that validated the integration of three tools – the Airborne Schlieren Photography System (ASPS), the Airborne Location Integrating Geospatial Navigation System (ALIGNS), and shock-sensing probe. Together these tools will measure and visualize the shock waves generated by NASA’s X-59.NASA/Genaro Vavuris “The photographer holds the camera to their chest, aiming out the side of the cockpit canopy at the sun, while the pilot maneuvers through a 100-foot-wide target zone,” said Edward Haering, a NASA aerospace engineer who leads research on schlieren. “If the sun leaves the frame, we lose that data, so we fly multiple passes to make sure we capture the shot.”
Aligning two fast-moving aircraft against the backdrop of the sun is the most challenging part. The photographer must capture the aircraft flying across the center of the sun, and even the slightest shift can affect the shot and reduce the quality of the data.
“It’s like trying to take a photo through a straw while flying supersonic,” Robillos said.
But with ALIGNS, the process is much more accurate. The software runs on ruggedized tablets and uses GPS data from both aircraft to calculate when the aircraft are in position for probing and to capture schlieren imagery. Giving pilots real-time instructions, enabling them to achieve precise positioning.
The X-59 team’s validation milestone for the schlieren imaging and other systems confirms that NASA’s core tools for measuring shock waves are ready to study the X-59 in flight, checking the aircraft’s unique acoustics to confirm its quieter sonic “thump.”
Share
Details
Last Updated Jun 10, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.govLocationArmstrong Flight Research Center Related Terms
Armstrong Flight Research Center Aeronautics Aeronautics Research Mission Directorate Ames Research Center Commercial Supersonic Technology Glenn Research Center Integrated Aviation Systems Program Langley Research Center Low Boom Flight Demonstrator Quesst (X-59) Quesst: The Vehicle Supersonic Flight Explore More
2 min read From Garment Industry to NASA: Meet Systems Engineer Daniel Eng
Article 4 days ago 2 min read NASA Provides Hardware for Space Station DNA Repair Experiment
Article 4 days ago 9 min read ARMD Research Solicitations (Updated June 6)
Article 4 days ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Aeronautics
Earth Science
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.