Members Can Post Anonymously On This Site
Satellites highlight a 30-year rise in ocean acidification
-
Similar Topics
-
By European Space Agency
After an extraordinary six-week voyage from northern Norway, the iconic Norwegian tall ship Statsraad Lehmkuhl has docked in Nice, France, concluding ESA’s 2025 Advanced Ocean Training course. Braving everything from wild storms to calm near-freezing seas, students aboard mastered techniques for collecting ocean measurements and harnessed satellite data to unlock insights into our blue planet.
Led by experts, this real-world expedition offered more than education – it sparked curiosity and a deeper commitment to understanding and protecting our oceans.
View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Sunlight reflects off the ocean surface near Norfolk, Virginia, in this 1991 space shuttle image, highlighting swirling patterns created by features such as internal waves, which are produced when the tide moves over underwater features. Data from the international SWOT mission is revealing the role of smaller-scale waves and eddies.NASA The international mission collects two-dimensional views of smaller waves and currents that are bringing into focus the ocean’s role in supporting life on Earth.
Small things matter, at least when it comes to ocean features like waves and eddies. A recent NASA-led analysis using data from the SWOT (Surface Water and Ocean Topography) satellite found that ocean features as small as a mile across potentially have a larger impact on the movement of nutrients and heat in marine ecosystems than previously thought.
Too small to see well with previous satellites but too large to see in their entirety with ship-based instruments, these relatively small ocean features fall into a category known as the submesoscale. The SWOT satellite, a joint effort between NASA and the French space agency CNES (Centre National d’Études Spatiales), can observe these features and is demonstrating just how important they are, driving much of the vertical transport of things like nutrients, carbon, energy, and heat within the ocean. They also influence the exchange of gases and energy between the ocean and atmosphere.
“The role that submesoscale features play in ocean dynamics is what makes them important,” said Matthew Archer, an oceanographer at NASA’s Jet Propulsion Laboratory in Southern California. Some of these features are called out in the animation below, which was created using SWOT sea surface height data.
This animation shows small ocean features — including internal waves and eddies — derived from SWOT observations in the Indian, Atlantic, and Pacific oceans, as well as the Mediterranean Sea. White and lighter blue represent higher ocean surface heights compared to darker blue areas. The purple colors shown in one location represent ocean current speeds.
NASA’s Scientific Visualization Studio “Vertical currents move heat between the atmosphere and ocean, and in submesoscale eddies, can actually bring up heat from the deep ocean to the surface, warming the atmosphere,” added Archer, who is a coauthor on the submesoscale analysis published in April in the journal Nature. Vertical circulation can also bring up nutrients from the deep sea, supplying marine food webs in surface waters like a steady stream of food trucks supplying festivalgoers.
“Not only can we see the surface of the ocean at 10 times the resolution of before, we can also infer how water and materials are moving at depth,” said Nadya Vinogradova Shiffer, SWOT program scientist at NASA Headquarters in Washington.
Fundamental Force
Researchers have known about these smaller eddies, or circular currents, and waves for decades. From space, Apollo astronauts first spotted sunlight glinting off small-scale eddies about 50 years ago. And through the years, satellites have captured images of submesoscale ocean features, providing limited information such as their presence and size. Ship-based sensors or instruments dropped into the ocean have yielded a more detailed view of submesoscale features, but only for relatively small areas of the ocean and for short periods of time.
The SWOT satellite measures the height of water on nearly all of Earth’s surface, including the ocean and freshwater bodies, at least once every 21 days. The satellite gives researchers a multidimensional view of water levels, which they can use to calculate, for instance, the slope of a wave or eddy. This in turn yields information on the amount of pressure, or force, being applied to the water in the feature. From there, researchers can figure out how fast a current is moving, what’s driving it and —combined with other types of information — how much energy, heat, or nutrients those currents are transporting.
“Force is the fundamental quantity driving fluid motion,” said study coauthor Jinbo Wang, an oceanographer at Texas A&M University in College Station. Once that quantity is known, a researcher can better understand how the ocean interacts with the atmosphere, as well as how changes in one affect the other.
Prime Numbers
Not only was SWOT able to spot a submesoscale eddy in an offshoot of the Kuroshio Current — a major current in the western Pacific Ocean that flows past the southeast coast of Japan — but researchers were also able to estimate the speed of the vertical circulation within that eddy. When SWOT observed the feature, the vertical circulation was likely 20 to 45 feet (6 to 14 meters) per day.
This is a comparatively small amount for vertical transport. However, the ability to make those calculations for eddies around the world, made possible by SWOT, will improve researchers’ understanding of how much energy, heat, and nutrients move between surface waters and the deep sea.
Researchers can do similar calculations for such submesoscale features as an internal solitary wave — a wave driven by forces like the tide sloshing over an underwater plateau. The SWOT satellite spotted an internal wave in the Andaman Sea, located in the northeastern part of the Indian Ocean off Myanmar. Archer and colleagues calculated that the energy contained in that solitary wave was at least twice the amount of energy in a typical internal tide in that region.
This kind of information from SWOT helps researchers refine their models of ocean circulation. A lot of ocean models were trained to show large features, like eddies hundreds of miles across, said Lee Fu, SWOT project scientist at JPL and a study coauthor. “Now they have to learn to model these smaller scale features. That’s what SWOT data is helping with.”
Researchers have already started to incorporate SWOT ocean data into some models, including NASA’s ECCO (Estimating the Circulation and Climate of the Ocean). It may take some time until SWOT data is fully a part of models like ECCO. But once it is, the information will help researchers better understand how the ocean ecosystem will react to a changing world.
More About SWOT
The SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. Managed for NASA by Caltech in Pasadena, California, JPL leads the U.S. component of the project. For the flight system payload, NASA provided the Ka-band radar interferometer (KaRIn) instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations. The Doppler Orbitography and Radioposition Integrated by Satellite system, the dual frequency Poseidon altimeter (developed by Thales Alenia Space), the KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations were provided by CNES. The KaRIn high-power transmitter assembly was provided by CSA.
To learn more about SWOT, visit:
https://swot.jpl.nasa.gov
News Media Contacts
Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
626-491-1943 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
2025-070
Share
Details
Last Updated May 15, 2025 Related Terms
SWOT (Surface Water and Ocean Topography) Jet Propulsion Laboratory Oceanography Oceans Explore More
6 min read NASA’s Magellan Mission Reveals Possible Tectonic Activity on Venus
Article 23 hours ago 6 min read NASA Studies Reveal Hidden Secrets About Interiors of Moon, Vesta
Article 1 day ago 5 min read NASA’s Europa Clipper Captures Mars in Infrared
Article 3 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
This team from University High School in Irvine, California, won the 2025 regional Oceans Science Bowl, hosted by NASA’s Jet Propulsion Laboratory. From left: Nethra Iyer, Joanne Chen, Matthew Feng, Avery Hexun, Angelina Yan, and coach David Knight.NASA/JPL-Caltech The annual regional event puts students’ knowledge of ocean-related science to the test in a fast-paced academic competition.
A team of students from University High School in Irvine earned first place at a fast-paced regional academic competition focused on ocean science disciplines and hosted by NASA’S Jet Propulsion Laboratory in Southern California.
Eight teams from Los Angeles and Orange counties competed at the March 29 event, dubbed the Los Angeles Surf Bowl. It was the last of about 20 regional competitions held across the U.S. this year in the lead-up to the virtual National Ocean Sciences Bowl finals event in mid-May.
Santa Monica High School earned second place; Francisco Bravo Medical Magnet High School in Los Angeles came in third. With its victory, University repeated its winning performance from last year. The school also won the JPL-hosted regional Science Bowl earlier this month.
Teams from all eight schools that participated in the JPL-hosted 2025 regional Ocean Sciences Bowl pose alongside volunteers and coaches.NASA/JPL-Caltech For the Ocean Sciences Bowl, teams are composed of four to five students and a coach. To prepare for the event, team members spend months answering multiple-choice questions with a “Jeopardy!”-style buzzer in just five seconds. Questions come in several categories, including biology, chemistry, geology, and physics along with related geography, technology, history, policy, and current events topics.
A question in the chemistry category might be “What chemical is the principal source of energy at many of Earth’s hydrothermal vent systems?” (It’s hydrogen sulfide.) Other questions can be considerably more challenging.
When a team member buzzes in and gives the correct answer to a multiple-choice question, the team earns a bonus question, which allows teammates to consult with one another to come up with an answer. More complicated “team challenge questions” prompt students to work together for a longer period. The theme of this year’s competition is “Sounding the Depths: Understanding Ocean Acoustics.”
University High junior Matthew Feng, a return competitor, said the team’s success felt like a payoff for hours of studying together, including on weekends. He keeps coming back to the competition partly for the sense of community and also for the personal challenge, he said. “It’s nice to compete and meet people, see people who were here last year,” Matthew added. “Pushing yourself mentally — the first year I was shaking so hard because I wasn’t used to that much adrenaline.”
Since 2000, JPL’s Public Services Office has coordinated the Los Angeles regional contest with the help of volunteers from laboratory staff and former Ocean Sciences Bowl participants in the local community. JPL is managed for NASA by Caltech.
The National Ocean Sciences Bowl is a program of the Center for Ocean Leadership at the University Corporation for Atmospheric Research, a nonprofit consortium of colleges and universities focused in part on Earth science-related education.
News Media Contact
Melissa Pamer
Jet Propulsion Laboratory, Pasadena, Calif.
626-314-4928
melissa.pamer@jpl.nasa.gov
2025-044
Share
Details
Last Updated Mar 31, 2025 Related Terms
Jet Propulsion Laboratory STEM Engagement at NASA Explore More
6 min read NASA’s Curiosity Rover Detects Largest Organic Molecules Found on Mars
Researchers analyzing pulverized rock onboard NASA’s Curiosity rover have found the largest organic compounds on…
Article 7 days ago 5 min read NASA Takes to the Air to Study Wildflowers
Article 1 week ago 6 min read Next-Generation Water Satellite Maps Seafloor From Space
Article 2 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Communities in coastal areas such as Florida, shown in this 1992 NASA image, are vulnerable to the effects of sea level rise, including high-tide flooding. A new agency-led analysis found a higher-than-expected rate of sea level rise in 2024, which was also the hottest year on record.NASA Last year’s increase was due to an unusual amount of ocean warming, combined with meltwater from land-based ice such as glaciers.
Global sea level rose faster than expected in 2024, mostly because of ocean water expanding as it warms, or thermal expansion. According to a NASA-led analysis, last year’s rate of rise was 0.23 inches (0.59 centimeters) per year, compared to the expected rate of 0.17 inches (0.43 centimeters) per year.
“The rise we saw in 2024 was higher than we expected,” said Josh Willis, a sea level researcher at NASA’s Jet Propulsion Laboratory in Southern California. “Every year is a little bit different, but what’s clear is that the ocean continues to rise, and the rate of rise is getting faster and faster.”
This graph shows global mean sea level (in blue) since 1993 as measured by a series of five satellites. The solid red line indicates the trajectory of this increase, which has more than doubled over the past three decades. The dotted red line projects future sea level rise.NASA/JPL-Caltech In recent years, about two-thirds of sea level rise was from the addition of water from land into the ocean by melting ice sheets and glaciers. About a third came from thermal expansion of seawater. But in 2024, those contributions flipped, with two-thirds of sea level rise coming from thermal expansion.
“With 2024 as the warmest year on record, Earth’s expanding oceans are following suit, reaching their highest levels in three decades,” said Nadya Vinogradova Shiffer, head of physical oceanography programs and the Integrated Earth System Observatory at NASA Headquarters in Washington.
Since the satellite record of ocean height began in 1993, the rate of annual sea level rise has more than doubled. In total, global sea level has gone up by 4 inches (10 centimeters) since 1993.
This long-term record is made possible by an uninterrupted series of ocean-observing satellites starting with TOPEX/Poseidon in 1992. The current ocean-observing satellite in that series, Sentinel-6 Michael Freilich, launched in 2020 and is one of an identical pair of spacecraft that will carry this sea level dataset into its fourth decade. Its twin, the upcoming Sentinel-6B satellite, will continue to measure sea surface height down to a few centimeters for about 90% of the world’s oceans.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
This animation shows the rise in global mean sea level from 1993 to 2024 based on da-ta from five international satellites. The expansion of water as it warms was responsible for the majority of the higher-than-expected rate of rise in 2024.NASA’s Scientific Visualization Studio Mixing It Up
There are several ways in which heat makes its way into the ocean, resulting in the thermal expansion of water. Normally, seawater arranges itself into layers determined by water temperature and density. Warmer water floats on top of and is lighter than cooler water, which is denser. In most places, heat from the surface moves very slowly through these layers down into the deep ocean.
But extremely windy areas of the ocean can agitate the layers enough to result in vertical mixing. Very large currents, like those found in the Southern Ocean, can tilt ocean layers, allowing surface waters to more easily slip down deep.
The massive movement of water during El Niño — in which a large pool of warm water normally located in the western Pacific Ocean sloshes over to the central and eastern Pacific — can also result in vertical movement of heat within the ocean.
Learn more about sea level:
https://sealevel.nasa.gov
News Media Contacts
Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
2025-036
Share
Details
Last Updated Mar 13, 2025 Related Terms
Sentinel-6 Michael Freilich Satellite Climate Science Jet Propulsion Laboratory Oceans Explore More
6 min read Cosmic Mapmaker: NASA’s SPHEREx Space Telescope Ready to Launch
Article 6 days ago 5 min read NASA Turns Off 2 Voyager Science Instruments to Extend Mission
Article 1 week ago 3 min read University High Knows the Answers at NASA JPL Regional Science Bowl
Article 1 week ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By USH
Let’s talk about Artificial Intelligence! How many people are actually aware of the rapid rise of AI and the potential risks it poses to humanity’s future? Do you recognize these dangers, or do you choose to ignore them, turning a blind eye to the reality of AI’s impact?
An increasing number of people are becoming aware of AI's rapid rise, yet many still unknowingly rely on AI-powered technologies. Studies show that while nearly all Americans use AI-integrated products, 64% remain unaware of it.
AI adoption is expanding, by 2023, 55% of organizations had implemented AI technologies, and nearly 77% of devices incorporated AI in some form. Despite this prevalence, only 17% of adults can consistently recognize when they are using AI.
With growing awareness comes rising concern. Many fear job displacement, while others worry about AI’s long-term risks. A survey found that 29% of respondents see advanced AI as a potential existential threat, and 20% believe it could cause societal collapse within 50 years.
A June 2024 a study across 32 countries revealed that 50% of people feel uneasy about AI. As AI continues to evolve, how many truly grasp its impact—and the risks it may pose for humanity’s future?
Now, a new paper highlights the risks of artificial general intelligence (AGI), arguing that the ongoing AI race is pushing the world toward mass unemployment, geopolitical conflict, and possibly even human extinction. The core issue, according to researchers, is the pursuit of power. Tech firms see AGI as an opportunity to replace human labor, tapping into a potential $100 trillion economic output. Meanwhile, governments view AGI as a transformative military tool.
Researchers in China have already developed a robot controlled by human brain cells grown in a lab, dubbed a "brain-on-chip" system. The brain organoid is connected to the robot through a brain-computer interface, enabling it to encode and decode information and control the robotic movements. By merging biological and artificial systems, this technology could pave the way for developing hybrid human-robot intelligence.
However, experts warn that superintelligence, once achieved, will be beyond human control.
The Inevitable Risks of AGI Development. 1. Mass Unemployment – AGI would fully replace cognitive and physical labor, displacing workers rather than augmenting their capabilities.2. Military Escalation – AI-driven weapons and autonomous systems increase the likelihood of catastrophic conflict.3. Loss of Control – Superintelligent AI will develop self-improvement capabilities beyond human comprehension, rendering control impossible.4. Deception and Self-Preservation – Advanced AI systems are already showing tendencies to deceive human evaluators and resist shutdown attempts.
Experts predict that AGI could arrive within 2–6 years. Empirical evidence shows that AI systems are advancing rapidly due to scaling laws in computational power. Once AGI surpasses human capabilities, it will exponentially accelerate its own development, potentially leading to superintelligence. This progression could make AI decision-making more sophisticated, faster, and far beyond human intervention.
The paper emphasizes that the race for AGI is occurring amidst high geopolitical tensions. Nations and corporations are investing hundreds of billions in AI development. Some experts warn that a unilateral breakthrough in AGI could trigger global instability—either through direct military applications or by provoking adversaries to escalate their own AI efforts, potentially leading to preemptive strikes.
If AI development continues unchecked, experts warn that humanity will eventually lose control. The transition from AGI to superintelligence would be akin to humans trying to manage an advanced alien civilization. Super intelligent AI could take over decision-making, gradually making humans obsolete. Even if AI does not actively seek harm, its vast intelligence and control over resources could make human intervention impossible.
Conclusion: The paper stresses that AI development should not be left solely in the hands of tech CEOs who acknowledge a 10–25% risk of human extinction yet continue their research. Without global cooperation, regulatory oversight, and a shift in AI development priorities, the world may be heading toward an irreversible crisis. Humanity must act now to ensure that AI serves as a tool for progress rather than a catalyst for destruction.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.