Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA astronaut Anil Menon poses for a portrait at NASA’s Johnson Space Center in Houston. Credit: NASA/Josh Valcarcel NASA astronaut Anil Menon will embark on his first mission to the International Space Station, serving as a flight engineer and Expedition 75 crew member.
      Menon will launch aboard the Roscosmos Soyuz MS-29 spacecraft in June 2026, accompanied by Roscosmos cosmonauts Pyotr Dubrov and Anna Kikina. After launching from the Baikonur Cosmodrome in Kazakhstan, the trio will spend approximately eight months aboard the orbiting laboratory.
      During his expedition, Menon will conduct scientific investigations and technology demonstrations to help prepare humans for future space missions and benefit humanity.
      Selected as a NASA astronaut in 2021, Menon graduated with the 23rd astronaut class in 2024. After completing initial astronaut candidate training, he began preparing for his first space station flight assignment.
      Menon was born and raised in Minneapolis and is an emergency medicine physician, mechanical engineer, and colonel in the United States Space Force. He holds a bachelor’s degree in neurobiology from Harvard University in Cambridge, Massachusetts, a master’s degree in mechanical engineering, and a medical degree from Stanford University in California. Menon completed his emergency medicine and aerospace medicine residency at Stanford and the University of Texas Medical Branch in Galveston.
      In his spare time, he still practices emergency medicine at Memorial Hermann’s Texas Medical Center and teaches residents at the University of Texas’ residency program. Menon served as SpaceX’s first flight surgeon, helping to launch the first crewed Dragon spacecraft on NASA’s SpaceX Demo-2 mission and building SpaceX’s medical organization to support humans on future missions. He served as a crew flight surgeon for both SpaceX flights and NASA expeditions aboard the space station.
      For nearly 25 years, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and conducting critical research for the benefit of humanity and our home planet. Space station research supports the future of human spaceflight as NASA looks toward deep space missions to the Moon under the Artemis campaign and in preparation for future human missions to Mars, as well as expanding commercial opportunities in low Earth orbit and beyond. 
      Learn more about International Space Station at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov

      Shaneequa Vereen
      Johnson Space Center, Houston
      281-483-5111
      shaneequa.y.vereen@nasa.gov   
      Share
      Details
      Last Updated Jul 01, 2025 LocationNASA Headquarters Related Terms
      Astronauts Humans in Space International Space Station (ISS) ISS Research View the full article
    • By USH
      In 1992, Dr. Gregory Rogers a NASA flight surgeon and former Chief of Aerospace Medicine witnessed an event that would stay with him for more than three decades. Now, after years of silence, he’s finally revealing the details of a 15-minute encounter that shattered everything he thought he knew about aerospace technology. 

      With a distinguished career that includes support for 31 space shuttle launches, training as an F-16 pilot, and deep involvement in classified aerospace programs, Dr. Rogers brings unmatched credibility to the conversation. His firsthand account of observing what appeared to be a reverse-engineered craft, emblazoned with "U.S. Air Force" markings, raises profound questions about the true timeline of UAP development and disclosure. 
      The full interview spans nearly two hours. To help navigate the discussion, here’s a timeline so you can jump to the segments that interest you most. 
      00:00 Introduction and Dr. Rogers' Unprecedented Credentials 07:25 The 1992 Cape Canaveral Encounter Begins 18:45 Inside the Hangar: First Glimpse of the Craft 26:30 "We Got It From Them" - The Shocking Revelation 35:15 Technical Analysis: Impossible Flight Characteristics 43:40 Electromagnetic Discharges and Advanced Propulsion 52:20 The Cover Story and 33 Years of Silence 1:01:10 Why He's Speaking Out Now: Grush and Fravor's Influence 1:08:45 Bob Lazar Connections and Reverse Engineering Timeline 1:17:20 Flight Surgeon Stories: The Human Side of Classified Work 1:25:50 G-Force Brain Injuries: An Unreported Military Crisis 1:34:30 Columbia Disaster: When Safety Warnings Are Ignored 1:43:15 The Bureaucratic Resistance to Truth 1:50:40 Congressional Testimony and The Path Forward 1:58:25 Final Thoughts: Legacy vs. Truth
        View the full article
    • By NASA
      The Roscosmos Progress 90 cargo craft approaches the International Space Station for a docking to the Poisk module delivering nearly three tons of food, fuel, and supplies replenishing the Expedition 72 crew. Credit: NASA NASA will provide live coverage of the launch and docking of a Roscosmos cargo spacecraft delivering approximately three tons of food, fuel, and supplies to the Expedition 73 crew aboard the International Space Station.
      The unpiloted Roscosmos Progress 92 spacecraft is scheduled to launch at 3:32 p.m. EDT, Thursday, July 3 (12:32 a.m. Baikonur time, Friday, July 4), on a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan.
      Live launch coverage will begin at 3:10 p.m. on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      After a two-day, in-orbit journey to the station, the spacecraft will dock autonomously to the space-facing port of the orbiting laboratory’s Poisk module at 5:27 p.m. on Saturday, July 5. NASA’s rendezvous and docking coverage will begin at 4:45 p.m. on NASA+.
      The Progress 92 spacecraft will remain docked to the space station for approximately six months before departing for re-entry into Earth’s atmosphere to dispose of trash loaded by the crew.
      Ahead of the spacecraft’s arrival, the Progress 90 spacecraft will undock from the Poisk module on Tuesday, July 1. NASA will not stream undocking.
      The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For nearly 25 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, through which astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including missions to the Moon under Artemis and, ultimately, human exploration of Mars.
      Learn more about the International Space Station, its research, and crew, at:
      https://www.nasa.gov/station
      -end-
      Jimi Russell
      Headquarters, Washington
      202-358-1100
      james.j.russell@nasa.gov  
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Jun 30, 2025 LocationNASA Headquarters Related Terms
      Humans in Space International Space Station (ISS) Johnson Space Center NASA Headquarters View the full article
    • By European Space Agency
      The European Space Agency’s Mars Express has captured a swirl of colour on the Red Planet, with yellows and rust-oranges meeting deep reds and browns. Lurking within this martian palette are not one but four dust devils, each snaking their way across the surface.
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      In addition to drilling rock core samples, the science team has been grinding its way into rocks to make sense of the scientific evidence hiding just below the surface.
      NASA’s Perseverance rover uses an abrading bit to get below the surface of a rocky out-crop nicknamed “Kenmore” on June 10. The eight images that make up this video were taken approximately one minute apart by one of the rover’s front hazard-avoidance cameras. NASA/JPL-Caltech On June 3, NASA’s Perseverance Mars rover ground down a portion of a rock surface, blew away the resulting debris, and then went to work studying its pristine interior with a suite of instruments designed to determine its mineralogic makeup and geologic origin. “Kenmore,” as nicknamed by the rover science team, is the 30th Martian rock that Perseverance has subjected to such in-depth scrutiny, beginning with drilling a two-inch-wide (5-centimeter-wide) abrasion patch.  
      “Kenmore was a weird, uncooperative rock,” said Perseverance’s deputy project scientist, Ken Farley from Caltech in Pasadena, California. “Visually, it looked fine — the sort of rock we could get a good abrasion on and perhaps, if the science was right, perform a sample collection. But during abrasion, it vibrated all over the place and small chunks broke off. Fortunately, we managed to get just far enough below the surface to move forward with an analysis.”
      The science team wants to get below the weathered, dusty surface of Mars rocks to see important details about a rock’s composition and history. Grinding away an abrasion patch also creates a flat surface that enables Perseverance’s science instruments to get up close and personal with the rock.
      This close-up view of an abrasion showing distinctive “tool marks” created by the Perseverance’s abrading bit was acquired on June 5. The image was taken from approximately 2.76 inches (7 centimeters) away by the rover’s WATSON imager. NASA/JPL-Caltech/MSSS Perseverance’s gold-colored abrading bit takes center stage in this image of the rover’s drill taken by the Mastcam-Z instrument on Aug. 2, 2021, the 160th day of the mission to Mars.NASA/JPL-Caltech/ASU/MSSS Time to Grind
      NASA’s Mars Exploration Rovers, Spirit and Opportunity, each carried a diamond-dust-tipped grinder called the Rock Abrasion Tool (RAT) that spun at 3,000 revolutions per minute as the rover’s robotic arm pushed it deeper into the rock. Two wire brushes then swept the resulting debris, or tailings, out of the way. The agency’s Curiosity rover carries a Dust Removal Tool, whose wire bristles sweep dust from the rock’s surface before the rover drills into the rock. Perseverance, meanwhile, relies on a purpose-built abrading bit, and it clears the tailings with a device that surpasses wire brushes: the gaseous Dust Removal Tool, or gDRT.
      “We use Perseverance’s gDRT to fire a 12-pounds-per-square-inch (about 83 kilopascals) puff of nitrogen at the tailings and dust that cover a freshly abraded rock,” said Kyle Kaplan, a robotic engineer at NASA’s Jet Propulsion Laboratory in Southern California. “Five puffs per abrasion — one to vent the tanks and four to clear the abrasion. And gDRT has a long way to go. Since landing at Jezero Crater over four years ago, we’ve puffed 169 times. There are roughly 800 puffs remaining in the tank.” The gDRT offers a key advantage over a brushing approach: It avoids any terrestrial contaminants that might be on a brush from getting on the Martian rock being studied.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This video captures a test of Perseverance’s Gaseous Dust Removal Tool (gDRT) in a vacuum chamber at NASA’s Jet Propulsion Laboratory in August 2020. The tool fires puffs of nitrogen gas at the tailings and dust that cover a rock after it has been abraded by the rover.NASA/JPL-Caltech Having collected data on abraded surfaces more than 30 times, the rover team has in-situ science (studying something in its original place or position) collection pretty much down. After gDRT blows the tailings away, the rover’s WATSON (Wide Angle Topographic Sensor for Operations and eNgineering) imager (which, like gDRT, is at the end of the rover’s arm) swoops in for close-up photos. Then, from its vantage point high on the rover’s mast, SuperCam fires thousands of individual pulses from its laser, each time using a spectrometer to determine the makeup of the plume of microscopic material liberated after every zap. SuperCam also employs a different spectrometer to analyze the visible and infrared light that bounces off the materials in the abraded area.
      “SuperCam made observations in the abrasion patch and of the powdered tailings next to the patch,” said SuperCam team member and “Crater Rim” campaign science lead, Cathy Quantin-Nataf of the University of Lyon in France. “The tailings showed us that this rock contains clay minerals, which contain water as hydroxide molecules bound with iron and magnesium — relatively typical of ancient Mars clay minerals. The abrasion spectra gave us the chemical composition of the rock, showing enhancements in iron and magnesium.”
      Later, the SHERLOC (Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals) and PIXL (Planetary Instrument for X-ray Lithochemistry) instruments took a crack at Kenmore, too. Along with supporting SuperCam’s discoveries that the rock contained clay, they detected feldspar (the mineral that makes much of the Moon brilliantly bright in sunlight). The PIXL instrument also detected a manganese hydroxide mineral in the abrasion — the first time this type of material has been identified during the mission.  
      With Kenmore data collection complete, the rover headed off to new territories to explore rocks — both cooperative and uncooperative — along the rim of Jezero Crater.
      “One thing you learn early working on Mars rover missions is that not all Mars rocks are created equal,” said Farley. “The data we obtain now from rocks like Kenmore will help future missions so they don’t have to think about weird, uncooperative rocks. Instead, they’ll have a much better idea whether you can easily drive over it, sample it, separate the hydrogen and oxygen contained inside for fuel, or if it would be suitable to use as construction material for a habitat.”
      Long-Haul Roving
      On June 19 (the 1,540th Martian day, or sol, of the mission), Perseverance bested its previous record for distance traveled in a single autonomous drive, trekking 1,348 feet (411 meters). That’s about 210 feet (64 meters) more than its previous record, set on April 3, 2023 (Sol 753). While planners map out the rover’s general routes, Perseverance can cut down driving time between areas of scientific interest by using its self-driving system, AutoNav.
      “Perseverance drove 4½ football fields and could have gone even farther, but that was where the science team wanted us to stop,” said Camden Miller, a rover driver for Perseverance at JPL. “And we absolutely nailed our stop target location. Every day operating on Mars, we learn more on how to get the most out of our rover. And what we learn today future Mars missions won’t have to learn tomorrow.”
      News Media Contact
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov    
      2025-082
      Share
      Details
      Last Updated Jun 25, 2025 Related Terms
      Perseverance (Rover) Jet Propulsion Laboratory Mars Explore More
      5 min read NASA’s Curiosity Mars Rover Starts Unpacking Boxwork Formations
      Article 2 days ago 4 min read NASA Mars Orbiter Captures Volcano Peeking Above Morning Cloud Tops
      Article 3 weeks ago 6 min read NASA’s Ready-to-Use Dataset Details Land Motion Across North America
      Article 3 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...