Members Can Post Anonymously On This Site
Optical links to connect air passengers securely
-
Similar Topics
-
By NASA
An aircraft body modeled after an air taxi with weighted test dummies inside is being prepared for a drop test by researchers at NASA’s Langley Research Center in Hampton, Virginia. The test was completed June 26, 2025, at Langley’s Landing and Impact Research Facility. The aircraft was dropped from a tall steel structure, known as a gantry, after being hoisted about 35 feet in the air by cables. NASA researchers are investigating aircraft materials that best absorb impact forces in a crash.NASA/Mark Knopp As the aviation industry works to design air taxis and other new electric aircraft, there’s a growing need to understand how the materials behave. That’s why NASA is investigating potential air taxi materials and designs to best protect passengers in the event of a crash.
On June 26, 2025, at NASA’s Langley Research Center in Hampton, Virginia, researchers dropped a full-scale aircraft body modeled after an air taxi from a tall steel structure, known as a gantry.
The NASA researchers behind this test and a previous one in late 2022 investigated materials that best absorb impact forces, generating data that will enable manufacturers to design safer advanced air mobility aircraft.
Image Credit: NASA/Mark Knopp
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
An aircraft body modeled after an air taxi with weighted test dummies inside is shown after a drop test at NASA’s Langley Research Center in Hampton, Virginia. The test was completed June 26 at Langley’s Landing and Impact Research Facility. The aircraft was dropped from a tall steel structure, known as a gantry, after being hoisted about 35 feet in the air by cables. NASA researchers are investigating aircraft materials that best absorb impact forces in a crash.NASA/Mark Knopp As the aviation industry works to develop new air taxis and other electric aircraft made from innovative, lightweight materials, there’s a growing need to understand how those materials behave under impact. That’s why NASA is investigating potential air taxi materials and designs that could best protect passengers in the event of a crash.
On June 26 at NASA’s Langley Research Center in Hampton, Virginia, researchers dropped a full-scale aircraft body modeled after an air taxi from a tall steel structure, known as a gantry.
The NASA researchers behind this test and a previous one in late 2022 investigated materials that best absorb impact forces, generating data that will enable manufacturers to design safer advanced air mobility aircraft.
“By showcasing elements of a crash alongside how added energy-absorbing technology could help make the aircraft more robust, these tests will help the development of safety regulations for advanced air mobility aircraft, leading to safer designs,” said Justin Littell, test lead, based at Langley.
An aircraft body modeled after an air taxi with weighted test dummies inside is hoisted about 35 feet in the air by cables at NASA’s Langley Research Center in Hampton, Virginia. The aircraft was dropped from a tall steel structure, known as a gantry, on June 26 at Langley’s Landing and Impact Research Facility. NASA researchers are investigating aircraft materials that best absorb impact forces in a crash.NASA/Mark Knopp During the June test, the aircraft was hoisted about 35 feet into the air and then released. It swung forward before crashing to the ground. The impact conditions were like the prior test in 2022, but with the addition of a 10-degree yaw, or twist, to the aircraft’s path. The yaw replicated a certification condition required by Federal Aviation Administration regulations for these kinds of aircraft.
After the drop, researchers began to evaluate how the structure and batteries withstood the impact. As expected, the material failures closely matched predictions from computer simulations, which were updated using data from the 2022 tests.
An aircraft body modeled after an air taxi with weighted test dummies inside is being prepared for a drop test by researchers at NASA’s Langley Research Center in Hampton, Virginia. The test was completed June 26 at Langley’s Landing and Impact Research Facility. The aircraft was dropped from a tall steel structure, known as a gantry, after being hoisted about 35 feet in the air by cables. NASA researchers are investigating aircraft materials that best absorb impact forces in a crash.NASA/Mark Knopp An aircraft body modeled after an air taxi with weighted test dummies inside is being prepared for a drop test by researchers at NASA’s Langley Research Center in Hampton, Virginia. The test was completed June 26 at Langley’s Landing and Impact Research Facility. The aircraft was dropped from a tall steel structure, known as a gantry, after being hoisted about 35 feet in the air by cables. NASA researchers are investigating aircraft materials that best absorb impact forces in a crash.
The aircraft included energy absorbing subfloors, similar to crumple zones in cars, which appeared to crush as intended to help protect the seats inside. The battery experiment involved adding mass to simulate underfloor battery components of air taxis to collect acceleration levels. Once analyzed, the team will share the data and insights with the public to enhance further research and development in this area.
Lessons learned from these tests will help the advanced air mobility industry evaluate the crashworthiness of aircraft designs before flying over communities.
The work is managed by the Revolutionary Vertical Lift Technology project under NASA’s Advanced Air Vehicles Program in support of NASA’s Advanced Air Mobility mission, which seeks to deliver data to guide the industry’s development of electric air taxis and drones.
Share
Details
Last Updated Jul 28, 2025 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.govLocationArmstrong Flight Research Center Related Terms
Armstrong Flight Research Center Advanced Air Mobility Advanced Air Vehicles Program Aeronautics Ames Research Center Drones & You Glenn Research Center Langley Research Center Revolutionary Vertical Lift Technology Explore More
3 min read NASA Rehearses How to Measure X-59’s Noise Levels
Article 3 days ago 4 min read NASA Scientist Finds Predicted Companion Star to Betelgeuse
Article 5 days ago 4 min read NASA Tests 5G-Based Aviation Network to Boost Air Taxi Connectivity
Article 5 days ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Humans in Space
Climate Change
Solar System
View the full article
-
By Space Force
Mr. Matthew Lohmeier was confirmed as the 29th Under Secretary of the Air Force.
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA researcher Darren Nash monitors experimental communications equipment on NASA’s Pilatus PC-12 during a flight test over NASA’s Glenn Research Center in Cleveland on April 17, 2025.NASA/Sara Lowthian-Hanna NASA engineers are exploring how the technology used in existing cellphone networks could support the next generation of aviation.
In April and May, researchers at NASA’s Glenn Research Center in Cleveland built two specialized radio systems to study how well fifth-generation cellular network technology, known as 5G, can handle the demands of air taxi communications.
“The goal of this research is to understand how wireless cellphone networks could be leveraged by the aviation industry to enable new frontiers of aviation operations,” said Casey Bakula, lead researcher for the project, who is based at Glenn. “The findings of this work could serve as a blueprint for future aviation communication network providers, like satellite navigation providers and telecommunications companies, and help guide the Federal Aviation Administration’s plan for future advanced air mobility network requirements in cities.”
Instead of developing entirely new standards for air taxi communications, NASA is looking to see if the aviation industry could leverage the expertise, experience, and investments made by the cellular industry towards the development of reliable, secure, and scalable aviation networks. If 5G networks could provide an “80% solution” to the challenge, researchers can focus on identifying the remaining 20% that would need to be adapted to meet the needs of the air taxi industry.
NASA researchers Darren Nash, left, and Brian Kachmar review signal data captured from experimental communications equipment onboard NASA’s Pilatus PC-12 on April 17, 2025.NASA/Sara Lowthian-Hanna 5G networks can manage a lot of data at once and have very low signal transmission delay compared to satellite systems, which could make them ideal for providing location data between aircraft in busy city skies. Ground antennas and networks in cities can help air taxis stay connected as they fly over buildings, making urban flights safer.
To conduct their tests, NASA researchers set up a system that meets current 5G standards and would allow for future improvements in performance. They placed one radio in the agency’s Pilatus PC-12 aircraft and set up another radio on the roof of Glenn’s Aerospace Communications Facility building. With an experimental license from the Federal Aviation Administration (FAA) to conduct flights, the team tested signal transmissions using a radio frequency band the Federal Communications Commission dedicated for the safe testing of drones and other uncrewed aircraft systems.
During testing, NASA’s PC-12 flew various flight patterns near Glenn. The team used some of the flight patterns to measure how the signal could weaken as the aircraft moved away from the ground station. Other patterns focused on identifying areas where nearby buildings might block signals, potentially causing interference or dead zones. The team also studied how the aircraft’s angle and position relative to the ground station affected the quality of the connection.
These initial tests provided the NASA team an opportunity to integrate its new C-Band radio testbed onto the aircraft, verify its basic functionality, and the operation of the corresponding ground station, as well as refine the team’s test procedures. The successful completion of these activities allows the team to begin research on how 5G standards and technologies could be utilized in existing aviation bands to provide air-to-ground and aircraft-to-aircraft communications services.
Experimental communications equipment is secure and ready for flight test evaluation in the back of NASA’s Pilatus PC-12 at NASA’s Glenn Research Center in Cleveland on April 17, 2025. NASA/Sara Lowthian-Hanna In addition to meeting these initial test objectives, the team also recorded and verified the presence of propeller modulation. This is a form of signal degradation caused by the propeller blades of the aircraft partially blocking radio signals as they rotate. The effect becomes more significant as aircraft fly at the lower altitudes air taxis are expected to operate. The airframe configuration and number of propellers on some of the new air taxi models may cause increased propeller modulation effects, so NASA researchers will study this further.
NASA research will provide baseline performance data that the agency will share with the FAA and the advanced air mobility sector of the aviation industry, which explores new air transportation options. Future research looking into cellular network usage will focus on issues such as maximum data speeds, signal-to-noise ratios, and synchronization between aircraft and ground systems. Researchers will be able to use NASA’s baseline data to measure the potential of new changes or features to communications systems.
Future aircraft will need to carry essential communications systems for command and control, passenger safety, and coordination with other aircraft to avoid collisions. Reliable wireless networks offer the possibility for safe operations of air taxis, particular in cities and other crowded areas.
This work is led by NASAs Air Mobility Pathfinders project under the Airspace Operations and Safety Program in support of NASA’s Advanced Air Mobility mission.
NASA Pilot Mark Russell emerges from NASA’s Pilatus PC-12 after mobile communication tests at NASA’s Glenn Research Center in Cleveland on April 17, 2025. NASA/Sara Lowthian-Hanna Share
Details
Last Updated Jul 23, 2025 Related Terms
Armstrong Flight Research Center Aeronautics Air Mobility Pathfinders project Air Traffic Solutions Airspace Operations and Safety Program Ames Research Center Drones & You Glenn Research Center Langley Research Center NASA Aircraft Explore More
3 min read NASA Tests Mixed Reality Pilot Simulation in Vertical Motion Simulator
Article 2 hours ago 4 min read GRUVE Lab
The GRUVE (Glenn Reconfigurable User-Interface and Virtual Reality Exploration) Lab is located within the GVIS…
Article 5 hours ago 4 min read GVIS History
As part of NASA Glenn’s Scientific Computing and Visualization Team, the GVIS Lab has a…
Article 5 hours ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home NASA’s Mars rover Curiosity acquired this image, looking south across the large boxwork structures, using its Left Navigation Camera on July 17, 2025. A series of ridges and hollows forms the dramatic topography in the foreground, while the distant buttes expose additional sedimentary structures. Curiosity acquired this image on Sol 4602, or Martian day 4,602 of the Mars Science Laboratory mission, at 17:49:18 UTC. NASA/JPL-Caltech Written by Lauren Edgar, Planetary Geologist at USGS Astrogeology Science Center
Earth planning date: Friday, July 18, 2025
Curiosity has started to investigate the main exposure of the boxwork structures! What was once a distant target is now on our doorstep, and Curiosity is beginning to explore the ridges and hollows that make up this terrain, to better understand their chemistry, morphology, and sedimentary structures.
I was on shift as Long Term Planner during this three-sol weekend plan, and the team put together a very full set of activities to thoroughly investigate this site — from the sky to the sand. The plan starts with Navcam and Mastcam observations to assess the amount of dust in the atmosphere, followed by a large Mastcam mosaic to characterize the resistant ridge on which the rover is parked. ChemCam will also acquire a LIBS observation on a target named “Vicuna” to assess the chemistry of a well-exposed vein. The team chose this parking location to characterize the chemistry and textures of this topographic ridge (to compare with topographic lows), so the next part of the plan involves contact science using APXS and MAHLI to look at different parts of the nodular bedrock in our workspace, at targets named “Totoral” and “Sillar.” There’s also a MAHLI observation of the same vein that ChemCam targeted.
The second sol involves more Mastcam imaging to look at different parts of this prominent ridge, along with a ChemCam LIBS observation on top of the ridge, and a ChemCam RMI mosaic to document the sedimentary structures in a distant boxwork feature. Navcam will also be used to look for dust devils. Then Curiosity will take a short drive of about 5 meters (about 16 feet) to explore the adjacent hollow (seen as the low point in the foreground of the above Navcam image). After the drive we’ll take more images for context, and to prepare for targeting in Monday’s plan.
After all of this work it’s time to pause and take a deep breath… of Martian atmosphere. The weekend plan involves an exciting campaign to look for variations in atmospheric chemistry between night and day. So Curiosity will take an overnight APXS atmospheric observation at the same time that two instruments within SAM assess its chemical and isotopic abundance.
On the third sol Curiosity will acquire a ChemCam passive sky observation, leading to a great set of atmospheric data. These measurements will be compared to even more atmospheric activities in Monday’s plan to get the full picture. As you can imagine, this plan requires a lot of power, but it’s worth it for all of the exciting science that we can accomplish here.
The road ahead has many highs and lows (literally), but I can’t wait to see what Curiosity will accomplish. The distant buttes remind us that there’s so much more to explore, and I look forward to continuing to see where Curiosity will take us.
For more Curiosity blog posts, visit MSL Mission Updates
Learn more about Curiosity’s science instruments
Explore More
2 min read Curiosity Blog, Sols 4602-4603: On Top of the Ridge
Article
4 days ago
2 min read Curiosity Blog, Sols 4600-4601: Up and Over the Sand Covered Ramp
Article
6 days ago
2 min read Curiosity Blog, Sols 4597-4599: Wide Open Spaces
Article
6 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars Resources
Explore this page for a curated collection of Mars resources.
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.