Jump to content

Hubble Shows Torrential Outflows from Infant Stars May Not Stop Them from Growing


Recommended Posts

Posted
low_STScI-H-p2106a-k-1340x520.png

Stars aren't shy about announcing their births. As they are born from the collapse of giant clouds of hydrogen gas and begin to grow, they launch hurricane-like winds and spinning, lawn-sprinkler-style jets shooting off in opposite directions.

This action carves out huge cavities in the giant gas clouds. Astronomers thought these stellar temper tantrums would eventually clear out the surrounding gas cloud, halting the star's growth. But in a comprehensive analysis of 304 fledgling stars in the Orion Complex, the nearest major star-forming region to Earth, researchers discovered that gas-clearing by a star's outflow may not be as important in determining its final mass as conventional theories suggest. Their study was based on previously collected data from NASA's Hubble and Spitzer space telescopes and the European Space Agency's Herschel Space Telescope.

The study leaves astronomers still wondering why star formation is so inefficient. Only 30% of a hydrogen gas cloud's initial mass winds up as a newborn star.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Universe Uncovered Hubble’s Partners in Science AI and Hubble Science Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Astronaut Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Spies Galaxy with Lots to See
      This NASA/ESA Hubble Space Telescope features the galaxy NGC 7456. ESA/Hubble & NASA, D. Thilker While it may appear as just another spiral galaxy among billions in the universe, this image from the NASA/ESA Hubble Space Telescope reveals a galaxy with plenty to study. The galaxy, NGC 7456, is located over 51 million light-years away in the constellation Grus (the Crane).
      This Hubble image reveals fine detail in the galaxy’s patchy spiral arms, followed by clumps of dark, obscuring dust. Blossoms of glowing pink are rich reservoirs of gas where new stars are forming, illuminating the clouds around them and causing the gas to emit this tell-tale red light. The Hubble observing program that collected this data focused on the galaxy’s stellar activity, tracking new stars, clouds of hydrogen, and star clusters to learn how the galaxy evolved through time.
      Hubble, with its ability to capture visible, ultraviolet, and some infrared light, is not the only observatory focused on NGC 7456. ESA’s XMM-Newton satellite imaged X-rays from the galaxy on multiple occasions, discovering many so-called ultraluminous X-ray sources. These small, compact objects emit terrifically powerful X-rays, much more than researchers would expect, given their size. Astronomers are still trying to pin down what powers these extreme objects, and NGC 7456 contributes a few more examples.
      The region around the galaxy’s supermassive black hole is also spectacularly bright and energetic, making NGC 7456 an active galaxy. Whether looking at its core or its outskirts, at visible light or X-rays, this galaxy has something interesting for astronomers to study!
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Sep 04, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Science Behind the Discoveries



      Hubble Design



      Hubble’s Night Sky Challenge


      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Universe Uncovered Hubble’s Partners in Science AI and Hubble Science Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Astronaut Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Homes in on Galaxy’s Star Formation
      This NASA/ESA Hubble Space Telescope image features the asymmetric spiral galaxy Messier 96. ESA/Hubble & NASA, F. Belfiore, D. Calzetti This NASA/ESA Hubble Space Telescope image features a galaxy whose asymmetric appearance may be the result of a galactic tug of war. Located 35 million light-years away in the constellation Leo, the spiral galaxy Messier 96 is the brightest of the galaxies in its group. The gravitational pull of its galactic neighbors may be responsible for Messier 96’s uneven distribution of gas and dust, asymmetric spiral arms, and off-center galactic core.
      This asymmetric appearance is on full display in the new Hubble image that incorporates data from observations made in ultraviolet, near infrared, and visible/optical light. Earlier Hubble images of Messier 96 were released in 2015 and 2018. Each successive image added new data, building up a beautiful and scientifically valuable view of the galaxy.
      The 2015 image combined two wavelengths of optical light with one near infrared wavelength. The optical light revealed the galaxy’s uneven form of dust and gas spread asymmetrically throughout its weak spiral arms and its off-center core, while the infrared light revealed the heat of stars forming in clouds shaded pink in the image.
      The 2018 image added two more optical wavelengths of light along with one wavelength of ultraviolet light that pinpointed areas where high-energy, young stars are forming.
      This latest version offers us a new perspective on Messier 96’s star formation. It includes the addition of light that reveals regions of ionized hydrogen (H-alpha) and nitrogen (NII). This data helps astronomers determine the environment within the galaxy and the conditions in which stars are forming. The ionized hydrogen traces ongoing star formation, revealing regions where hot, young stars are ionizing the gas. The ionized nitrogen helps astronomers determine the rate of star formation and the properties of gas between stars, while the combination of the two ionized gasses helps researchers determine if the galaxy is a starburst galaxy or one with an active galactic nucleus.
      The bubbles of pink gas in this image surround hot, young, massive stars, illuminating a ring of star formation in the galaxy’s outskirts. These young stars are still embedded within the clouds of gas from which they were born. Astronomers will use the new data in this image to study how stars are form within giant dusty gas clouds, how dust filters starlight, and how stars affect their environments.
      Explore More:

      Learn more about why astronomers study light in detail


      Explore the different wavelengths of light Hubble sees


      Explore the Night Sky: Messier 96

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Aug 29, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Spiral Galaxies Stars The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science Highlights



      Hubble’s 35th Anniversary



      Hubble’s Night Sky Challenge


      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered AI and Hubble Science Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Observes Noteworthy Nearby Spiral Galaxy
      This NASA/ESA Hubble Space Telescope image features the nearby spiral galaxy NGC 2835. ESA/Hubble & NASA, R. Chandar, J. Lee and the PHANGS-HST team This NASA/ESA Hubble Space Telescope image offers a new view of the nearby spiral galaxy NGC 2835, which lies 35 million light-years away in the constellation Hydra (the Water Snake). The galaxy’s spiral arms are dotted with young blue stars sweeping around an oval-shaped center where older stars reside.
      This image differs from previously released images from Hubble and the NASA/ESA/CSA James Webb Space Telescope because it incorporates new data from Hubble that captures a specific wavelength of red light called H-alpha. The regions that are bright in H-alpha emission are visible along NGC 2835’s spiral arms, where dozens of bright pink nebulae appear like flowers in bloom. Astronomers are interested in H-alpha light because it signals the presence of several different types of nebulae that arise during different stages of a star’s life. Newborn, massive stars create nebulae called H II regions that are particularly brilliant sources of H-alpha light, while dying stars can leave behind supernova remnants or planetary nebulae that can also be identified by their H-alpha emission.
      By using Hubble’s sensitive instruments to survey 19 nearby galaxies, researchers aim to identify more than 50,000 nebulae. These observations will help to explain how stars affect their birth neighborhoods through intense starlight and winds.
      Text Credit: ESA/Hubble
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Share








      Details
      Last Updated Aug 21, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Astronauts



      Hubble e-Books



      Hubble’s Night Sky Challenge


      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Dwarf planet Ceres is shown in these enhanced-color renderings that use images from NASA’s Dawn mission. New thermal and chemicals models that rely on the mission’s data indicate Ceres may have long ago had conditions suitable for life.NASA/JPL-Caltech/UCLA/MPS/DLR/IDA The dwarf planet is cold now, but new research paints a picture of Ceres hosting a deep, long-lived energy source that may have maintained habitable conditions in the past.
      New NASA research has found that Ceres may have had a lasting source of chemical energy: the right types of molecules needed to fuel some microbial metabolisms. Although there is no evidence that microorganisms ever existed on Ceres, the finding supports theories that this intriguing dwarf planet, which is the largest body in the main asteroid belt between Mars and Jupiter, may have once had conditions suitable to support single-celled lifeforms.
      Science data from NASA’s Dawn mission, which ended in 2018, previously showed that the bright, reflective regions on Ceres’ surface are mostly made of salts left over from liquid that percolated up from underground. Later analysis in 2020 found that the source of this liquid was an enormous reservoir of brine, or salty water, below the surface. In other research, the Dawn mission also revealed evidence that Ceres has organic material in the form of carbon molecules — essential, though not sufficient on its own, to support microbial cells.
      The presence of water and carbon molecules are two critical pieces of the habitability puzzle on Ceres. The new findings offer the third: a long-lasting source of chemical energy in Ceres’ ancient past that could have made it possible for microorganisms to survive. This result does not mean that Ceres had life, but rather, that there likely was “food” available should life have ever arisen on Ceres.
      This illustration depicts the interior of dwarf planet Ceres, including the transfer of water and gases from the rocky core to a reservoir of salty water. Carbon dioxide and methane are among the molecules carrying chemical energy beneath Ceres’ surface.NASA/JPL-Caltech In the study, published in Science Advances on Aug. 20, the authors built thermal and chemical models mimicking the temperature and composition of Ceres’ interior over time. They found that 2.5 billion years or so ago, Ceres’ subsurface ocean may have had a steady supply of hot water containing dissolved gases traveling up from metamorphosed rocks in the rocky core. The heat came from the decay of radioactive elements within the dwarf planet’s rocky interior that occurred when Ceres was young — an internal process thought to be common in our solar system.
      “On Earth, when hot water from deep underground mixes with the ocean, the result is often a buffet for microbes — a feast of chemical energy. So it could have big implications if we could determine whether Ceres’ ocean had an influx of hydrothermal fluid in the past,” said Sam Courville, lead author of the study. Now based at Arizona State University in Tempe, he led the research while working as an intern at NASA’s Jet Propulsion Laboratory in Southern California, which also managed the Dawn mission.
      Catching Chill
      The Ceres we know today is unlikely to be habitable. It is cooler, with more ice and less water than in the past. There is currently insufficient heat from radioactive decay within Ceres to keep the water from freezing, and what liquid remains has become a concentrated brine.
      The period when Ceres would most likely have been habitable was between a half-billion and 2 billion years after it formed (or about 2.5 billion to 4 billion years ago), when its rocky core reached its peak temperature. That’s when warm fluids would have been introduced into Ceres’ underground water.
      The dwarf planet also doesn’t have the benefit of present-day internal heating generated by the push and pull of orbiting a large planet, like Saturn’s moon Enceladus and Jupiter’s moon Europa do. So Ceres’ greatest potential for habitability-fueling energy was in the past.
      This result has implications for water-rich objects throughout the outer solar system, too. Many of the other icy moons and dwarf planets that are of similar size to Ceres (about 585 miles, or 940 kilometers, in diameter) and don’t have significant internal heating from the gravitational pull of planets could have also had a period of habitability in their past.
      More About Dawn
      A division of Caltech in Pasadena, JPL managed Dawn’s mission for NASA’s Science Mission Directorate in Washington. Dawn was a project of the directorate’s Discovery Program, managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama. JPL was responsible for overall Dawn mission science. Northrop Grumman in Dulles, Virginia, designed and built the spacecraft. The German Aerospace Center, Max Planck Institute for Solar System Research, Italian Space Agency and Italian National Astrophysical Institute were international partners on the mission team.
      For a complete list of mission participants, visit:
      https://solarsystem.nasa.gov/missions/dawn/overview/
      News Media Contacts
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-287-4115
      gretchen.p.mccartney@jpl.nasa.gov 
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      2025-108
      Share
      Details
      Last Updated Aug 20, 2025 Related Terms
      Dawn Asteroids Ceres Jet Propulsion Laboratory The Solar System Vesta Explore More
      6 min read NASA, IBM’s ‘Hot’ New AI Model Unlocks Secrets of Sun
      Editor’s Note: This article was updated Aug. 20, 2025, to correct the number of years of…
      Article 5 hours ago 4 min read NASA’s Psyche Captures Images of Earth, Moon
      Article 1 day ago 3 min read Summer Triangle Corner: Altair
      Altair is the last stop on our trip around the Summer Triangle! The last star…
      Article 5 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By USH
      NASA’s 1991 Discovery shuttle video shows UFOs making impossible maneuvers, evading a possible Star Wars railgun test. Evidence of secret tech? 

      In September 1991, NASA’s Space Shuttle Discovery transmitted live video that has since become one of the most debated UFO clips ever recorded. The footage, later analyzed by independent researchers, shows glowing objects in orbit performing maneuvers far beyond the limits of known physics. 
      One object appears over Earth’s horizon, drifts smoothly, then suddenly reacts to a flash of light by accelerating at impossible speeds, estimated at over 200,000 mph while withstanding forces of 14,000 g’s. NASA officially dismissed the anomalies as ice particles or debris, but side by side comparisons with actual orbital ice show key differences: the objects make sharp turns, sudden accelerations, and fade in brightness in ways consistent with being hundreds of miles away, not near the shuttle. 
      Image analysis expert Dr. Mark Carlotto confirmed that at least one object was located about 1,700 miles from the shuttle, placing it in Earth’s atmosphere. At that distance, the object would be too large and too fast to be dismissed as ice or space junk. 
      The flash and two streaks seen in the video resemble the Pentagon’s “Brilliant Pebbles” concept, a railgun based missile defense system tested in the early 1990s. Researchers suggest the shuttle cameras may have accidentally, or deliberately, captured a live Star Wars weapons test in orbit. 
      The UFO easily evaded the attack, leading some to conclude that it was powered by a form of hyperdimensional technology capable of altering gravity. 
      Notably, following this 1991 incident, all subsequent NASA shuttle external camera feeds were censored or delayed, raising speculation that someone inside the agency allowed the extraordinary footage to slip out.
        View the full article
  • Check out these Videos

×
×
  • Create New...