Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Earth Earth Observer Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam Announcements More Archives Conference Schedules Style Guide 8 min read
      ICESat-2 Applications Team Hosts Satellite Bathymetry Workshop
      Introduction
      On September 15, 2018, the NASA Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission launched from Vandenberg Air Force Base and began its journey to provide spatially dense and fine precision global measurements of our Earth’s surface elevation. Now in Phase E of NASA’s project life cycle (where the mission is carried out, data is collected and analyzed, and the spacecraft is maintained) of the mission and with almost six years of data collection, the focus shifts to looking ahead to new applications and synergies that may be developed using data from ICESat-2’s one instrument: the Advanced Topographic Laster Altimetry System (ATLAS) – see Figure 1.
      Figure 1. The ATLAS instrument onboard the ICESat-2 platform obtains data using a green, photon-counting lidar that is split into six beams. Figure credit: ICESat-2 Mission Team Satellite-derived bathymetry (SDB) is the process of mapping the seafloor using satellite imagery. The system uses light penetration and reflection in the water to make measurements and estimate variations in ocean floor depths. SDB provides several advantages over other techniques used to map the seafloor (e.g., cost-effectiveness, global coverage, and faster data acquisition). On the other hand, SDB can be limited by water clarity, spatial resolution of the remote sensing measurement, and accuracy, depending on the method and satellite platform/instrument. These limitations notwithstanding, SDB can be used in a wide variety of applications, e.g., coastal zone management, navigation and safety, marine habitat monitoring, and disaster response. ICESat-2 has become a major contributor to SDB, with over 2000 journal article references to this topic to date. Now is the time to think about the state-of-the-art and additional capabilities of SDB for the future.
      To help stimulate such thinking, the NASA ICESat-2 applications team hosted a one-day workshop on March 17, 2025. The workshop focused on the principles and methods for SDB. Held in conjunction with the annual US-Hydro meeting on March 17–20, 2025 at the Wilmington Convention Center in Wilmington, NC, the meeting was hosted by the Hydrographic Society of America. During the workshop the applications team brought together SDB end-users, algorithm developers, operators, and decision makers to discuss the current state and future needs of satellite bathymetry for the community. The objective of this workshop was to provide a space to foster collaboration and conceptualization of SDB applications not yet exploited and to allow for networking to foster synergies and collaborations between different sectors.
      Meeting Overview
      The workshop provided an opportunity for members from government, academia, and private sectors to share their SDB research, applications, and data fusion activities to support decision making and policy support across a wide range of activities. Presenters highlighted SDB principles, methods, and tools for SDB, an introduction of the new ICESat-2 bathymetric data product (ATL24), which is now available through the National Snow and Ice Data Center (NSIDC). During the workshop, the ICESat-2 team delivered a live demonstration of a web service for science data processing. Toward the end of the day, the applications team opened an opportunity for attendees to gather and discuss various topics related to SDB. This portion of the meeting was also available to online participation via Webex Webinars, which broadened the discussion.
      Meeting Goal
      The workshop offered a set of plenary presentations and discussions. During the plenary talks, participants provided an overview of Earth observation and SDB principles, existing methods and tools, an introduction to the newest ICESat-2 bathymetry product ATL24, a demonstration of the use of the webservice SlideRule Earth, and opportunities for open discission, asking questions and developing collaborations.
      Meeting and Summary Format
      The agenda of the SDB workshop was intended to bring together SDB end-users, including ICESat-2 application developers, satellite operators, and decision makers from both government and non-governmental entities to discuss the current state and future needs of the community. The workshop consisted of six sessions that covered various topics of SDB. This report is organized according to the topical focus of the plenary presentations with a brief narrative summary of each presentation included. The discussions that followed were not recorded and are not included in the report. The last section of this report consists of conclusions and future steps. The online meeting agenda includes links to slide decks for many of the presentations.
      Welcoming Remarks
      Aimee Neeley [NASA’s Goddard Space Flight Center (GSFC)/Science Systems and Applications Inc. (SSAI)—ICESat-2 Mission Applications Lead] organized the workshop and served as the host for the event. She opened the day with a brief overview of workshop goals, logistics, and the agenda.
      Overview of Principles of SDB
      Ross Smith [TCarta—Senior Geospatial Scientist] provided an overview of the principles of space-based bathymetry, including the concepts, capabilities, limitations, and methods. Smith began by relaying the history of satellite-derived bathymetry, which began with a collaboration between NASA and Jacques Cousteau in 1975, in which Cousteau used Landsat 1 data, as well as in situ data, to calculate bathymetry to a depth of 22 m (72 ft) in the Bahamas. Smith then described the five broad methodologies and their basic concepts for deriving bathymetry from remote sensing: radar altimetry, bottom reflectance, wave kinematics, laser altimetry, and space-based photogrammetry – see Figure 2. He then introduced the broad methodologies, most commonly used satellite sensors, the capabilities and limitations of each sensor, and the role of ICESat-2 in satellite bathymetry.
      Figure 2. Satellite platforms commonly used for SDB. Figure credit: Ross Smith Review of SDB Methods and Tools
      In this grouping of plenary presentations, representatives from different organizations presented their methods and tools for creating satellite bathymetry products.
      Gretchen Imahori [National Oceanic and Atmospheric Administration’s (NOAA) National Geodetic Survey, Remote Sensing Division] presented the NOAA SatBathy (beta v2.2.3) Tool Update. During this presentation, Imahori provided an overview of the NOAA SatBathy desktop tool, example imagery, updates to the latest version, and the implementation plan for ATL24. The next session included more details about ATL24.
      Minsu Kim [United States Geological Survey (USGS), Earth Resource and Observation Center (EROS)/ Kellogg, Brown & Root (KBR)—Chief Scientist] presented the talk Satellite Derived Bathymetry (SDB) Using OLI/MSI Based-On Physics-Based Algorithm. He provided an overview of an SDB method based on atmospheric and oceanic optical properties. Kim also shared examples of imagery from the SDB product – see Figure 3.
      Figure 3. Three-dimensional renderings of the ocean south of Key West, FL created by adding SDB Digital Elevation Model (physics-based) to a Landsat Operational Land Imager (OLI) scene [top] and a Sentinel-2 Multispectral Imager (MSI) scene [bottom]. Figure credit: Minsu Kim Edward Albada [Earth Observation and Environmental Services GmbH (EOMAP)—Principal] presented the talk Satellite Lidar Bathymetry and EoappTM SLB-Online. The company EOMAP provides various services, including SDB, habitat mapping. For context, Albada provided an overview of EoappTM SDB-Online, a cloud-based software for creating SDB. (EoappTM SDB-online is one of several Eoapp apps and is based on the ICESat-2 photon data product (ATL03). Albada also provided example use cases from Eoapp – see Figure 4.
      Figure 4.A display of the Marquesas Keys (part of the Florida Keys) using satellite lidar bathymetry data from the Eoapp SLB-Online tool from EOMAP. Figure credit: Edward Albada Monica Palaseanu-Lovejoy [USGS GMEG—Research Geographer] presented on a Satellite Triangulated Sea Depth (SaTSeaD): Bathymetry Module for NASA Ames Stereo Pipeline (ASP). She provided an overview of the shallow water bathymetry SaTSeaD module, a photogrammetric method for mapping bathymetry. Palaseanu-Lovejoy presented error statistics and validation procedures. She also shared case study results from Key West, FL; Cocos Lagoon, Guam; and Cabo Rojo, Puerto Rico – see Figure 5.
      Figure 5. Photogrammetric bathymetry map of Cabo Roja, Puerto Rico displayed using the SatSeaD Satellite Triangulated Sea Depth (SaTSeaD): Bathymetry Module for NASA Ames Stereo Pipeline (ASP) module. Figure credit: Monica Palaseanu-Lovejoy Ross Smith presented a presentation on TCarta’s Trident Tools: Approachable SDB|Familiar Environment. During this presentation, Smith provided an overview of the Trident Tools Geoprocessing Toolbox deployed in Esri’s ArcPro. Smith described several use cases for the toolbox in Abu Dhabi, United Arab Emirates; Lucayan Archipelago, Bahamas; and the Red Sea.
      Michael Jasinski [GSFC—Research Hydrologist] presented on The ICESat-2 Inland Water Along Track Algorithm (ATL13). He provided an overview of the ICESat-2 data product ATL13 an inland water product that is distributed by NSIDC. Jasinski described the functionality of the ATL13 semi-empirical algorithm and proceeded to provide examples of its applications with lakes and shallow coastal waters – see Figure 6.
      Figure 6. A graphic of the network of lakes and rivers in North America that are measured by ICESat-2. Figure credit: Michael Jasinski ATL24 Data Product Update
      Christopher Parrish [Oregon State University, School of Civil and Construction Engineering—Professor] presented on ATL24: A New Global ICESat-2 Bathymetric Data Product. Parrish provided an overview of the recently released ATL24 product and described the ATL24 workflow, uncertainty analysis, and applications in shallow coastal waters. Parrish included a case study where ATL24 data were used for bathymetric mapping of Kiriwina Island, Papua New Guinea – see Figure 7.
      Figure 7. ATL24 data observed for Kiriwina Island, Papua New Guinea. Figure credit: Christopher Parrish SlideRule Demo
      J. P. Swinski [GSFC—Computer Engineer] presented SlideRule Earth: Enabling Rapid, Scalable, Open Science. Swinski explained that SlideRule Earth is a public web service that provides access to on-demand processing and visualization of ICESat-2 data. SlideRule can be used to process a subset of ICESat-2 data products, including ATL24 – see Figure 8.
      Figure 8. ATL24 data observed for Sanibel, FL as viewed on the SlideRule Earth public web client. Figure credit: SlideRule Earth SDB Accuracy
      Kim Lowell [University of New Hampshire—Data Analytics Research Scientist and Affiliate Professor] presented on SDB Accuracy Assessment and Improvement Talking Points. During this presentation, Lowell provided examples of accuracy assessments and uncertainty through the comparison of ground measurement of coastal bathymetry to those modeled from satellite data.
      Conclusion
      The ICESat-2 Satellite Bathymetry workshop fostered discussion and collaboration around the topic of SDB methods. The plenary speakers presented the state-of-the-art methods used by different sectors and organizations, including government and private entities. With the release of ATL24, ICESat-2’s new bathymetry product, it was prudent to have a conversation about new and upcoming capabilities for all methods and measurements of satellite bathymetry. Both in-person and online participants were provided with the opportunity to learn, ask questions, and discuss potential applications in their own research. The ICESat-2 applications team hopes to host more events to ensure the growth of this field to maximize the capabilities of ICESat-2 and other Earth Observing systems.
      Share








      Details
      Last Updated Jun 05, 2025 Related Terms
      Earth Science View the full article
    • By NASA
      Two NASA-developed technologies are key components of a new high-resolution sensor for observing wildfires: High Operating Temperature Barrier Infrared Detector (HOT-BIRD), developed with support from NASA’s Earth Science Technology Office (ESTO), and a cutting-edge Digital Readout Integrated Circuit (DROIC), developed with funding from NASA’s Small Business Innovation Research (SBIR) program.
      NASA’s c-FIRST instrument could provide high resolution data from a compact space-based platform in under an hour, making it easier for wildfire managers to detect and monitor active burns. Credit: NASA/JPL A novel space-based sensor for observing wildfires could allow first responders to monitor burns at a global scale, paving the way for future small satellite (SmallSat) constellations dedicated entirely to fire management and prevention.
      Developed with support from NASA’s Earth Science Technology Office (ESTO), the “Compact Fire Infrared Radiance Spectral Tracker” (c-FIRST) is a small, mid-wave infrared sensor that collects thermal radiation data across five spectral bands. Most traditional space-based sensors dedicated to observing fires have long revisit times, observing a scene just once over days or even weeks. The compact c-FIRST sensor could be employed in a SmallSat constellation that could observe a scene multiple times a day, providing first responders data with high spatial resolution in under an hour.
      In addition, c-FIRST’s dynamic spectral range covers the entire temperature profile of terrestrial wild fires, making it easier for first-responders to detect everything from smoldering, low-intensity fires to flaming, high intensity fires.
      “Wildfires are becoming more frequent, and not only in California. It’s a worldwide problem, and it generates tons of by-products that create very unhealthy conditions for humans,” said Sarath Gunapala, who is an Engineering Fellow at NASA’s Jet Propulsion Laboratory (JPL) and serves as Principal Investigator for c-FIRST.
      The need for space-based assets dedicated to wildfire management is severe. During the Palisade and Eaton Fires earlier this year, strong winds kept critical observation aircraft from taking to the skies, making it difficult for firefighters to monitor and track massive burns.
      Space-based sensors with high revisit rates and high spatial resolution would give firefighters and first responders a constant source of eye-in-the-sky data.
      “Ground-based assets don’t have far-away vision. They can only see a local area. And airborne assets, they can’t fly all the time. A small constellation of CubeSats could give you that constant coverage,” said Gunapala.
      c-FIRST leverages decades of sensor development at JPL to achieve its compact size and high performance. In particular, the quarter-sized High Operating Temperature Barrier Infrared Detector (HOT-BIRD), a compact infrared detector also developed at JPL with ESTO support, keeps c-FIRST small, eliminating the need for bulky cryocooler subsystems that add mass to traditional infrared sensors.
      With HOT-BIRD alone, c-FIRST could gather high-resolution images and quantitative retrievals of targets between 300°K (about 80°F) to 1000°K (about 1300°F). But when paired with a state-of-the-art Digital Readout Integrated Circuit (DROIC), c-FIRST can observe targets greater than 1600°K (about 2400°F).
      Developed by Copious Imaging LLC. and JPL with funding from NASA’s Small Business Innovation Research (SBIR) program, this DROIC features an in-pixel digital counter to reduce saturation, allowing c-FIRST to capture reliable infrared data across a broader spectral range.
      Artifical intelligence (AI) will also play a role in c-FIRST’s success. Gunapala plans to leverage AI in an onboard smart controller that parses collected data for evidence of hot spots or active burns. This data will be prioritized for downlinking, keeping first responders one step ahead of potential wildfires.
      “We wanted it to be simple, small, low cost, low power, low weight, and low volume, so that it’s ideal for a small satellite constellation,” said Gunapala.
      Gunapala and his team had a unique opportunity to test c-FIRST after the Palisade and Eaton Fires in California. Flying their instrument aboard NASA’s B-200 Super King Air, the scientists identified lingering hot spots in the Palisades and Eaton Canyon area five days after the initial burn had been contained.
      Now, the team is eyeing a path to low Earth orbit. Gunapala explained that their current prototype employs a standard desktop computer that isn’t suited for the rigors of space, and they’re working to incorporate a radiation-tolerant computer into their instrument design.
      But this successful test over Los Angeles demonstrates c-FIRST is fit for fire detection and science applications. As wildfires become increasingly common and more destructive, Gunapala hopes that this tool will help first responders combat nascent wildfires before they become catastrophes.
      “To fight these things, you need to detect them when they’re very small,” said Gunapala.
      A publication about c-FIRST appeared in the journal “Society of Photo-Optical Instrumentation Engineers” (SPIE) in March, 2023.
      For additional details, see the entry for this project on NASA TechPort.
      To learn more about emerging technologies for Earth science, visit ESTO’s open solicitations page.
      Project Lead:  Sarath Gunapala, NASA Jet Propulsion Laboratory (JPL)
      Sponsoring Organization: NASA ESTO
      Share








      Details
      Last Updated Jun 03, 2025 Related Terms
      Technology Highlights Earth Science Division Earth Science Technology Office Science-enabling Technology Explore More
      4 min read Unearthly Plumbing Required for Plant Watering in Space


      Article


      2 weeks ago
      6 min read Quantum Sensing via Matter-Wave Interferometry Aboard the International Space Station


      Article


      4 weeks ago
      4 min read Entrepreneurs Challenge Winner PRISM is Using AI to Enable Insights from Geospatial Data


      Article


      1 month ago
      View the full article
    • By NASA
      Scientists have discovered a star behaving like no other seen before, giving fresh clues about the origin of a new class of mysterious objects.X-ray: NASA/CXC/ICRAR, Curtin Univ./Z. Wang et al.; Infrared: NASA/JPL/CalTech/IPAC; Radio: SARAO/MeerKAT; Image processing: NASA/CXC/SAO/N. Wolk An unusual star (circled in white at right) behaving like no other seen before and its surroundings are featured in this composite image released on May 28, 2025. A team of astronomers combined data from NASA’s Chandra X-ray Observatory and the Square Kilometer Array Pathfinder (ASKAP) radio telescope on Wajarri Country in Australia to study the discovered object, known as ASKAP J1832−0911 (ASKAP J1832 for short).
      ASKAP J1832 belongs to a class of objects called “long period radio transients” discovered in 2022 that vary in radio wave intensity in a regular way over tens of minutes. This is thousands of times longer than the length of the repeated variations seen in pulsars, which are rapidly spinning neutron stars that have repeated variations multiple times a second. ASKAP J1832 cycles in radio wave intensity every 44 minutes, placing it into this category of long period radio transients. Using Chandra, the team discovered that ASKAP J1832 is also regularly varying in X-rays every 44 minutes. This is the first time that such an X-ray signal has been found in a long period radio transient.
      Image credit: X-ray: NASA/CXC/ICRAR, Curtin Univ./Z. Wang et al.; Infrared: NASA/JPL/CalTech/IPAC; Radio: SARAO/MeerKAT; Image processing: NASA/CXC/SAO/N. Wolk
      View the full article
    • By NASA
      2 Min Read June’s Night Sky Notes: Seasons of the Solar System
      Two views of the planet Uranus appear side-by-side for comparison. At the top, left corner of the left image is a two-line label. The top line reads Uranus November 9, 2014. The bottoms line reads HST WFC3/UVIS. At the top, left corner of the right image is the label November 9, 2022. At the left, bottom corner of each image is a small, horizontal, white line. In both panels, over this line is the value 25,400 miles. Below the line is the value 40,800 kilometers. At the top, right corner of the right image are three, colored labels representing the color filters used to make these pictures. Located on three separate lines, these are F467M in blue, F547M in green, and F485M in red. On the bottom, right corner of the right image are compass arrows showing north toward the top and east toward the left. Credits:
      NASA by Kat Troche of the Astronomical Society of the Pacific
      Here on Earth, we undergo a changing of seasons every three months. But what about the rest of the Solar System? What does a sunny day on Mars look like? How long would a winter on Neptune be? Let’s take a tour of some other planets and ask ourselves what seasons might look like there.
      Martian Autumn
      Although Mars and Earth have nearly identical axial tilts, a year on Mars lasts 687 Earth days (nearly 2 Earth years) due to its average distance of 142 million miles from the Sun, making it late autumn on the red planet. This distance and a thin atmosphere make it less than perfect sweater weather. A recent weather report from Gale Crater boasted a high of -18 degrees Fahrenheit for the week of May 20, 2025.
      Credit: NASA/JPL-Caltech Seven Years of Summer
      Saturn has a 27-degree tilt, very similar to the 25-degree tilt of Mars and the 23-degree tilt of Earth. But that is where the similarities end. With a 29-year orbit, a single season on the ringed planet lasts seven years. While we can’t experience a Saturnian season, we can observe a ring plane crossing here on Earth instead. The most recent plane crossing took place in March 2025, allowing us to see Saturn’s rings ‘disappear’ from view.
      A Lifetime of Spring
      NASA Hubble Space Telescope observations in August 2002 show that Neptune’s brightness has increased significantly since 1996. The rise is due to an increase in the amount of clouds observed in the planet’s southern hemisphere. These increases may be due to seasonal changes caused by a variation in solar heating. Because Neptune’s rotation axis is inclined 29 degrees to its orbital plane, it is subject to seasonal solar heating during its 164.8-year orbit of the Sun. This seasonal variation is 900 times smaller than experienced by Earth because Neptune is much farther from the Sun. The rate of seasonal change also is much slower because Neptune takes 165 years to orbit the Sun. So, springtime in the southern hemisphere will last for several decades! Remarkably, this is evidence that Neptune is responding to the weak radiation from the Sun. These images were taken in visible and near-infrared light by Hubble’s Wide Field and Planetary Camera 2. Credit: NASA, L. Sromovsky, and P. Fry (University of Wisconsin-Madison) Even further away from the Sun, each season on Neptune lasts over 40 years. Although changes are slower and less dramatic than on Earth, scientists have observed seasonal activity in Neptune’s atmosphere. These images were taken between 1996 and 2002 with the Hubble Space Telescope, with brightness in the southern hemisphere indicating seasonal change.
      As we welcome summer here on Earth, you can build a Suntrack model that helps demonstrate the path the Sun takes through the sky during the seasons. You can find even more fun activities and resources like this model on NASA’s Wavelength and Energy activity. 
      View the full article
    • By European Space Agency
      Video: 00:02:46 For half a century, the European Space Agency (ESA) has been serving Europe as its space agency and inspiring its citizens. On 30 May 1975, the ESA Convention was signed by 10 founding Member States and has since now expanded to 23 Member States, three Associate Members, four Cooperating States and a Cooperation Agreement with Canada. This anniversary year provides the opportunity to reflect not only on ESA’s past achievements, but even more so on its future perspectives.
      View the full article
  • Check out these Videos

×
×
  • Create New...