Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA Astronaut Kate RubinsNASA NASA astronaut and microbiologist Kate Rubins retired Monday after 16 years with the agency. During her time with NASA, Rubins completed two long-duration missions aboard the International Space Station, logging 300 days in space and conducting four spacewalks.
       
      “I want to extend my sincere gratitude to Kate for her dedication to the advancement of human spaceflight,” said Steve Koerner, acting director of NASA’s Johnson Space Center in Houston. “She is leaving behind a legacy of excellence and inspiration, not only to our agency, but to the research and medical communities as well. Congratulations, Kate, on an extraordinary career.”
       
      Rubins’ first mission to the orbiting laboratory began in July 2016, aboard the first test flight of the new Soyuz MS spacecraft. As part of Expedition 48/49, she contributed to more than 275 scientific experiments, including molecular and cellular biology research, and she was the first person to sequence DNA in space. Her work enabled significant advances with in-flight molecular diagnostics, long-duration cell culture, and the development of molecular biology tools and processes, such as handling and transferring small amounts of liquids in microgravity. Rubins also led the integration and deployment of biomedical hardware aboard the space station, supporting crew health and scientific research in space and on Earth.
       
      She again launched in October 2020, aboard a Soyuz spacecraft from the Baikonur Cosmodrome in Kazakhstan, taking part in Expedition 63/64. Alongside her crewmates, Rubins spent hundreds of hours working on new experiments and furthering research investigations conducted during her mission, including heart research and multiple microbiology studies. She also advanced her work on DNA sequencing in space, which could allow future astronauts to diagnose illness or identify microbes growing aboard the station or during future exploration missions.
       
      “From her groundbreaking work in space to her leadership on the ground, Kate has brought passion and excellence to everything she’s done,” said Joe Acaba, chief of the Astronaut Office at NASA Johnson. “She’s been an incredible teammate and role model. We will miss her deeply, but her impact will continue to inspire.”
       
      In addition to her flight assignments, Rubins served as acting deputy director of NASA’s Human Health and Performance Directorate, where she helped guide strategy for crew health and biomedical research. More recently, she contributed to developing next-generation lunar spacesuits, helping prepare for future Artemis missions to the Moon.
       
       
      Before her selection as an astronaut in 2009, Rubins received a bachelor’s degree in molecular biology from the University of California, San Diego, and a doctorate in cancer biology from Stanford University Medical School’s Biochemistry Department and Microbiology and Immunology Department. After returning from her second space mission, Rubins commissioned as a major in the U.S. Army Reserve, serving as a microbiologist in the Medical Service Corps. She currently holds the role of innovation officer with the 75th U.S. Army Reserve Innovation Command’s MedBio Detachment, headquartered in Boston. 


      A frequent keynote speaker at scientific, educational, and industry events on space biology, biomedical engineering, and human exploration, Rubins has advocated for NASA’s scientific and exploration missions. As she transitions from government service, she remains committed to advancing innovation at the intersection of biology, technology, and space.
       
      “It has been the honor of a lifetime to live and work in space,” said Rubins. “I am grateful for the extraordinary advances at NASA, and it was a privilege to serve and contribute to something so meaningful. The mission of exploration continues, and I can’t wait to watch this nation do what once seemed impossible.”
       

      Learn more about how NASA explores the unknown and innovates for the benefit of humanity at:
      https://www.nasa.gov/
      -end-
      Raegan Scharfetter
      Johnson Space Center, Houston
      281-910-4989
      raegan.r.scharfetter@nasa.gov

      View the full article
    • By NASA
      JAXA (Japan Aerospace Exploration Agency)/Takuya Onishi In this photo from June 28, 2025, Expedition 73 flight engineer Jonny Kim and former NASA astronaut and director of human spaceflight at Axiom Space Peggy Whitson work together inside the International Space Station’s Destiny laboratory module setting up hardware for cancer research.
      The hardware is used to culture patient-derived cancer cells, model their growth in microgravity, and test a state-of-the-art fluorescence microscope. Results of this study may lead to earlier cancer detection methods, development of advanced cancer treatments, and promote future stem cell research in space.
      Whitson returned to Earth on July 15, 2025, with fellow Axiom Mission 4 crew members ISRO (Indian Space Research Organisation) astronaut Shubhanshu Shukla, ESA (European Space Agency) project astronaut Sławosz Uznański-Wiśniewski of Poland, and Hungarian to Orbit (HUNOR) astronaut Tibor Kapu of Hungary. They completed about two and a half weeks in space.
      Image credit: JAXA (Japan Aerospace Exploration Agency)/Takuya Onishi
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
      Curiosity Blog, Sols 4595-4596: Just Another Beautiful Day on Mars
      NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on July 9, 2025 — Sol 4594, or Martian day 4,594 of the Mars Science Laboratory mission — at 11:03:48 UTC. NASA/JPL-Caltech Written by Ashley Stroupe, Mission Operations Engineer at NASA’s Jet Propulsion Laboratory
      Earth planning date: Wednesday, July 9, 2025
      In today’s plan, we have a little bit of everything. With it being winter still, we are taking advantage of the ability to let the rover sleep in, doing most of the activities in the afternoon when it is warmer and we need less heating. As the Systems Engineer (Engineering Uplink Lead) today, I sequenced the needed heating and some other engineering housekeeping activities.
      We start off with an extensive remote science block with Mastcam imaging of a nearby trough to look for potential sand activity. There is color imaging of a displaced block, “Ouro,” near a circular depression — could this be a small crater? Mastcam also takes a look at a ridge “Volcán Peña Blanca” to look at the sedimentary structures, which may provide insights into its formation. ChemCam LIBS and Mastcam team up to look at the “Los Andes” target, which is the dark face of a nearby piece of exposed bedrock. ChemCam RMI and Mastcam check out a distant small outcrop to examine the geometry of the layers. We also throw in environmental observations, a Mastcam solar Tau and a Navcam line-of-site looking at dust in the atmosphere. After a nap, Curiosity will be doing some contact science activities on “Cataratas del Jardín” and “Rio Ivirizu” bedrock targets. Looking at two nearby targets for variability can help us understand the local geology. Cataratas del Jardín gets a brushing to clear away the dust before both targets are examined by MAHLI and APXS. Fortunately for the Arm Rover Planner, both of these targets are fairly flat and easy to reach.  Before going to sleep for the night, Curiosity will stow the arm to be ready for driving on the next sol.On the second sol, there is more remote science. ChemCam LIBS and Mastcam will examine “Torotoro,” another piece of layered bedrock. ChemCam RMI will take a mosaic of “Paniri,” which is an interesting incision in the rock that is filled with another material. There are also environmental observations, a Navcam dust devil survey and a suprahorizon movie. After another nap, Curiosity is getting on the road. We’re heading southwest (direction shown in the image) about 50 meters (about 164 feet), but we need to sneak between sandy pits and skirt around some terrain that we can’t see behind. The terrain here provides pretty nice driving, though, without a lot of big boulders, steep slopes, or pointy rocks that can poke holes in our wheels. After the standard post-drive imaging for our next plan, there are some Navcam observations to look for clouds and our normal look under the rover with MARDI before Curiosity goes to sleep for the night.

      For more Curiosity blog posts, visit MSL Mission Updates


      Learn more about Curiosity’s science instruments

      Share








      Details
      Last Updated Jul 15, 2025 Related Terms
      Blogs Explore More
      4 min read Curiosity Blog, Sols 4593-4594: Three Layers and a Lot of Structure at Volcán Peña Blanca


      Article


      4 days ago
      3 min read Continuing the Quest for Clays


      Article


      7 days ago
      2 min read Curiosity Blog, Sols 4589–4592: Setting up to explore Volcán Peña Blanca


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By Amazing Space
      Did Earth Just Have Its Fastest Day Ever?
    • By USH
      An Alberta couple captured something extraordinary on camera during the evening of July 2, 2025.  Just after a powerful lightning strike near their home in Rich Valley, Alberta, they saw what they described as a ball of fire hovering roughly 20 feet above the ground. 

      “It just appeared out of nowhere,” one of them recalled. “A big, glowing sphere hanging in the air — and then, just like that, it vanished.” 
      The main stream media are trying to blame this on the weather speculating the glowing orb could be ball lightning, an elusive and still-unexplained weather phenomenon reported for centuries. Often described as floating spheres of light, ball lightning has defied scientific consensus. 
      But could it be more than just an atmospheric anomaly? 
      A similar sighting occurred in 2016 in Russia’s Novosibirsk Region, where a massive, luminous sphere was seen drifting silently across a field before vanishing into nearby woods. That object, see image below, too, appeared after intense lightning activity and left experts just as baffled. 

      Is this truly a rare natural phenomenon? Or are we witnessing something beyond the scope of conventional science, a window into technology or intelligence we don’t yet understand?
        View the full article
  • Check out these Videos

×
×
  • Create New...