Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      The Space RCO hosted an Agile Satellite Industry Engagement Day, bringing together 13 prospective industry partners for technical discussions aimed at advancing next-generation satellite design and procurement.

      View the full article
    • By Space Force
      The Space RCO hosted an Agile Satellite Industry Engagement Day, bringing together 13 prospective industry partners for technical discussions aimed at advancing next-generation satellite design and procurement.

      View the full article
    • By NASA
      2 min read
      Explore Our Dynamic Sun!
      from NASA’s Heliophysics Education Activation Team (NASA HEAT) and the Astronomical Society of the Pacific/Night Sky Network
      Have you ever wondered about what the Sun is made of? Or why do you get sunburned on even cloudy days? NASA’s new Explore the Sun toolkit brings the wonders of solar science to you, offering answers to these questions and more!
      Solar images from NASA’s Solar Dynamics Observatory show different features on the Sun, including sunspots in the visible light spectrum. Filaments and prominences can be seen in hydrogen-alpha, coronal mass ejections in X-ray, and details in ultraviolet light. On the right side of the banner, aurorae observed on Earth by the International Space Station is shown, along with aurorae on other planets as seen by NASA’s Hubble Space Telescope and James Webb Space Telescope. NASA/Astronomical Society of the Pacific A collaboration between NASA’s Heliophysics Education Activation Team (NASA HEAT) and the Astronomical Society of the Pacific’s Night Sky Network program, this resource was developed for informal educators, amateur astronomers, and astronomy enthusiasts alike, providing engaging activities for anyone eager to learn more about our nearest star.
      Whether you’re hosting a solar viewing event or an indoor presentation, the Our Dynamic Sun toolkit provides easy-to-use materials designed to spark curiosity. Each card in the set pairs NASA images with clear explanations for each topic:
      “What color is the Sun?” (hint: it’s not yellow!) “How does the Sun affect us here on Earth?” “When will the Sun die?” These cards not only answer common questions the public may have, but also highlight how NASA’s solar research helps us understand space weather, solar storms, and their impacts on our daily lives.
      Bring the Sun’s story to your community and inspire the next generation of explorers. You can download this free Our Dynamic Sun toolkit here: https://bit.ly/suntoolkit
      View the full article
    • By NASA
      In northwest Australia, the Great Sandy Desert holds great geological interest as a zone of active sand dune movement. While a variety of dune forms appear across the region, this astronaut photograph features numerous linear dunes (about 25 meters high) separated in a roughly regular fashion (0.5 to 1.5 kilometers apart).NASA On March 25, 2013, an astronaut aboard the International Space Station took this photo of the Great Sandy Desert in northwest Australia, showcasing linear dunes separated in a roughly regular fashion. When you fly over such dune fields—either in an airplane or the space station—the fire scars stand out. Where thin vegetation has been burned, the dunes appear red from the underlying sand; dunes appear darker where the vegetation remains.
      Strings of narrow lakes that represent ancient rivers are also present in the region. The white feature down the center of the image is Lake Auld. The color is the result of a cemented combination of fine, clay-like sediment and salts from the evaporation of flood waters that occasionally fill the lake. Linear dunes can be seen entering Lake Auld on the east side. During flooding events, the sand of the dune noses is dispersed, becoming incorporated into the muds and salts of the lake floor sediments. During the long, intervening dry periods, sand can blow across the lake floor to build thinner, smaller dunes, visible as linear accumulations on the west side of the lake.
      See more photos taken by astronauts.
      Text credit: NASA/M. Justin Wilkinson
      Image credit: NASA
      View the full article
    • By European Space Agency
      This new NASA/ESA/CSA James Webb Space Telescope Picture of the Month presents HH 30 in unprecedented detail. This target is an edge-on protoplanetary disc that is surrounded by jets and a disc wind, and is located in the dark cloud LDN 1551 in the Taurus Molecular Cloud. 
      View the full article
  • Check out these Videos

×
×
  • Create New...