Jump to content

NASA Selects Blue Origin to Deliver VIPER Rover to Moon’s South Pole


Recommended Posts

  • Publishers
Posted
This artist’s concept shows Blue Origin’s Blue Moon Mark 1 lander and NASA’s VIPER (Volatiles Investigating Polar Exploration Rover) on the lunar surface.
This artist’s concept shows Blue Origin’s Blue Moon Mark 1 lander and NASA’s VIPER (Volatiles Investigating Polar Exploration Rover) on the lunar surface.
Credit: Courtesy of Blue Origin

As part of the agency’s Artemis campaign, NASA has awarded Blue Origin of Kent, Washington, a CLPS (Commercial Lunar Payload Services) task order with an option to deliver a rover to the Moon’s South Pole region. NASA’s VIPER (Volatiles Investigating Polar Exploration Rover) will search for volatile resources, such as ice, on the lunar surface and collect science data to support future exploration at the Moon and Mars.

“NASA is leading the world in exploring more of the Moon than ever before, and this delivery is just one of many ways we’re leveraging U.S. industry to support a long-term American presence on the lunar surface,” said acting NASA Administrator Sean Duffy. “Our rover will explore the extreme environment of the lunar South Pole, traveling to small, permanently shadowed regions to help inform future landing sites for our astronauts and better understand the Moon’s environment – important insights for sustaining humans over longer missions, as America leads our future in space.”

The CLPS task order has a total potential value of $190 million. This is the second CLPS lunar delivery awarded to Blue Origin. Their first delivery – using their Blue Moon Mark 1 (MK1) robotic lander – is targeted for launch later this year to deliver NASA’s Stereo Cameras for Lunar-Plume Surface Studies and Laser Retroreflective Array payloads to the Moon’s South Pole region.

With this new award, Blue Origin will deliver VIPER to the lunar surface in late 2027, using a second Blue Moon MK1 lander, which is in production. NASA previously canceled the VIPER project and has since explored alternative approaches to achieve the agency’s goals of mapping potential off-planet resources, like water.

“NASA is committed to studying and exploring the Moon, including learning more about water on the lunar surface, to help determine how we can harness local resources for future human exploration,” said Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington. “We’ve been looking for creative, cost-effective approaches to accomplish these exploration goals. This private sector-developed landing capability enables this delivery and focuses our investments accordingly – supporting American leadership in space and ensuring our long-term exploration is robust and affordable.”

The task order, called CS-7, has an award base to design the payload-specific accommodations and to demonstrate how Blue Origin’s flight design will off-load the rover to the lunar surface. There is an option on the contract to deliver and safely deploy the rover to the Moon’s surface. NASA will make the decision to exercise that option after the execution and review of the base task and of Blue Origin’s first flight of the Blue Moon MK1 lander. This unique approach will reduce the agency’s cost and technical risk. The rover has a targeted science window for its 100-day mission that requires a landing by late 2027.

Blue Origin is responsible for the complete landing mission architecture and will conduct design, analysis, and testing of a large lunar lander capable of safely delivering the lunar volatiles science rover to the Moon. Blue Origin also will handle end-to-end payload integration, planning and support, and post-landing payload deployment activities. NASA will conduct rover operations and science planning.

“The search for lunar volatiles plays a key role in NASA’s exploration of the Moon, with important implications for both science and human missions under Artemis,” said Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters. “This delivery could show us where ice is most likely to be found and easiest to access, as a future resource for humans. And by studying these sources of lunar water, we also gain valuable insight into the distribution and origin of volatiles across the solar system, helping us better understand the processes that have shaped our space environment and how our inner solar system has evolved.”

Through CLPS, American companies continue to demonstrate leadership in commercial space advancing capabilities and accomplishing NASA’s goal for a commercial lunar economy. NASA’s Ames Research Center in California’s Silicon Valley led the VIPER rover development and will lead its science investigations, and NASA’s Johnson Space Center in Houston provided rover engineering development for Ames.

To learn more about CLPS and Artemis, visit:

https://www.nasa.gov/clps

-end-

Alise Fisher
Headquarters, Washington
202-358-2546
alise.m.fisher@nasa.gov

Kenna Pell / Nilufar Ramji
Johnson Space Center, Houston
281-483-5111
kenna.m.pell@nasa.gov / nilufar.ramji@nasa.gov  

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      All the pieces are stacking up – literally – for NASA’s first crewed mission of the Artemis program coming in 2026.
      Teams are finishing integration of the Orion spacecraft for the Artemis II test flight with its launch abort system on Sept. 17 inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. The 44-foot-tall tower-like abort structure would swiftly carry the four-person crew inside Orion to safety in the unlikely event of an emergency during launch or ascent atop the SLS (Space Launch System) rocket.
      Over the next few weeks, teams will complete remaining closeout activities before moving the spacecraft to its final stop before the launch pad: the agency’s Vehicle Assembly Building. There it will be added to the top of the rocket, before the finished stack is rolled out to the launch pad on its way to the Moon.
      The abort system is comprised of three solid rocket motors: the jettison, attitude, and abort motors. In the case of an emergency, these motors work together to propel the astronauts inside Orion’s crew module to safety: the abort motor pulls the crew module away from the launch vehicle; the attitude control motor steers and orients the capsule; then the jettison motor ignites to separate the abort system from the crew module prior to parachute deployment. During a normal launch, Orion will shed the abort system and leave it behind once the crew is safely through the most dynamic part of ascent, leaving Orion thousands of pounds lighter for the rest of its journey.
      Image credit: NASA/Frank Michaux
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      In this infrared photograph, the Optical Communications Telescope Laboratory at JPL’s Table Mountain Facility near Wrightwood, California, beams its eight-laser beacon to the Deep Space Optical Communications flight laser transceiver aboard NASA’s Psyche spacecraft.NASA/JPL-Caltech The project has exceeded all of its technical goals after two years, setting up the foundations of high-speed communications for NASA’s future human missions to Mars.
      NASA’s Deep Space Optical Communications technology successfully showed that data encoded in lasers could be reliably transmitted, received, and decoded after traveling millions of miles from Earth at distances comparable to Mars. Nearly two years after launching aboard the agency’s Psyche mission in 2023, the technology demonstration recently completed its 65th and final pass, sending a laser signal to Psyche and receiving the return signal, from 218 million miles away. 
      “NASA is setting America on the path to Mars, and advancing laser communications technologies brings us one step closer to streaming high-definition video and delivering valuable data from the Martian surface faster than ever before,” said acting NASA Administrator Sean Duffy. “Technology unlocks discovery, and we are committed to testing and proving the capabilities needed to enable the Golden Age of exploration.”
      This video details how the Deep Space Optical Communications experiment broke records and how the technology demonstration could pave the way for future high-bandwidth data transmission out to Mars distances and beyond. NASA/JPL-Caltech Record-breaking technology
      Just a month after launch, the Deep Space Optical Communications demonstration proved it could send a signal back to Earth it established a link with the optical terminal aboard the Psyche spacecraft.
      “NASA Technology tests hardware in the harsh environment of space to understand its limits and prove its capabilities,” said Clayton Turner, associate administrator, Space Technology Mission Directorate at NASA Headquarters in Washington. “Over two years, this technology surpassed our expectations, demonstrating data rates comparable to those of household broadband internet and sending engineering and test data to Earth from record-breaking distances.”
      On Dec. 11, 2023, the demonstration achieved a historic first by streaming an ultra-high-definition video to Earth from over 19 million miles away (about 80 times the distance between Earth and the Moon), at the system’s maximum bitrate of 267 megabits per second. The project also surpassed optical communications distance records on Dec. 3, 2024, when it downlinked Psyche data from 307 million miles away (farther than the average distance between Earth and Mars). In total, the experiment’s ground terminals received 13.6 terabits of data from Psyche.
      How it works
      Managed by NASA’s Jet Propulsion Laboratory (JPL) in Southern California, the experiment consists of a flight laser transceiver mounted on the Psyche spacecraft, along with two ground stations to receive and send data from Earth. A powerful 3-kilowatt uplink laser at JPL’s Table Mountain Facility transmitted a laser beacon to Psyche, helping the transceiver determine where to aim the optical communications laser back to Earth.
      Both Psyche and Earth are moving through space at tremendous speeds, and they are so distant from each other that the laser signal — which travels at the speed of light — can take several minutes to reach its destination. By using the precise pointing required from the ground and flight laser transmitters to close the communication link, teams at NASA proved that optical communications can be done to support future missions throughout the solar system.
      Another element of the experiment included detecting and decoding a faint signal after the laser traveled millions of miles. The project enlisted a 200-inch telescope at Caltech’s Palomar Observatory in San Diego County as its primary downlink station, which provided enough light-collecting area to collect the faintest photons. Those photons were then directed to a high-efficiency detector array at the observatory, where the information encoded in the photons could be processed.   
      “We faced many challenges, from weather events that shuttered our ground stations to wildfires in Southern California that impacted our team members,” said Abi Biswas, Deep Space Optical Communications project technologist and supervisor at JPL. “But we persevered, and I am proud that our team embraced the weekly routine of optically transmitting and receiving data from Psyche. We constantly improved performance and added capabilities to get used to this novel kind of deep space communication, stretching the technology to its limits.”
      Brilliant new era
      In another test, data was downlinked to an experimental radio frequency-optical “hybrid” antenna at the Deep Space Network’s Goldstone complex near Barstow, California. The antenna was retrofitted with an array of seven mirrors, totaling 3 feet in diameter, enabling the antenna to receive radio frequency and optical signals from Psyche simultaneously.
      The project also used Caltech’s Palomar Observatory and a smaller 1-meter telescope at Table Mountain to receive the same signal from Psyche. Known as “arraying,” this is commonly done with radio antennas to better receive weak signals and build redundancy into the system.
      “As space exploration continues to evolve, so do our data transfer needs,” said Kevin Coggins, deputy associate administrator, NASA’s SCaN (Space Communications and Navigation) program at the agency’s headquarters. “Future space missions will require astronauts to send high-resolution images and instrument data from the Moon and Mars back to Earth. Bolstering our capabilities of traditional radio frequency communications with the power and benefits of optical communications will allow NASA to meet these new requirements.”
      This demonstration is the latest in a series of optical communication experiments funded by the Space Technology Mission Directorate’s Technology Demonstration Missions Program managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, and the agency’s SCaN program within the Space Operations Mission Directorate. The Psyche mission is led by Arizona State University. Lindy Elkins-Tanton of the University of California, Berkeley is the principal investigator. NASA JPL, managed by Caltech in Pasadena, California, is responsible for the mission’s overall management.
      To learn more about the laser communications demo, visit:
      https://www.jpl.nasa.gov/missions/deep-space-optical-communications-dsoc/
      NASA’s Laser Comms Demo Makes Deep Space Record, Completes First Phase NASA’s Tech Demo Streams First Video From Deep Space via Laser Teachable Moment: The NASA Cat Video Explained News Media Contact
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      2025-120
      Share
      Details
      Last Updated Sep 18, 2025 Related Terms
      Deep Space Optical Communications (DSOC) Jet Propulsion Laboratory Psyche Mission Space Communications & Navigation Program Space Operations Mission Directorate Space Technology Mission Directorate Tech Demo Missions Explore More
      2 min read NASA Gateways to Blue Skies 2026 Competition
      Article 28 minutes ago 6 min read NASA’s Tally of Planets Outside Our Solar System Reaches 6,000
      Article 1 day ago 2 min read NASA Makes Webby 30s List of Most Iconic, Influential on Internet
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      The commercial aviation industry is a crucial component of the U.S. economy, playing a vital role in transporting people, intermediate/final goods, and driving demand for various goods and services nationwide. This network enhances the quality of life for the whole country and facilitates business interactions within and globally, boosting productivity and prosperity. However, the industry faces numerous challenges, particularly the need to reduce rising operational costs in a growing market to accommodate increased demand in air travel, e-commerce, and cargo sectors. Issues such as aging aircraft and components, technological advancements, and staffing shortages further complicate these challenges, hindering efforts to balance passenger safety with operational efficiency. To address these challenges, the industry needs to swiftly innovate and implement more efficient and resilient aircraft maintenance practices, including the adoption of new technologies. In the 2026 Gateways to Blue Skies Competition, teams will conceptualize novel aviation maintenance advancements that can be implemented by 2035 or sooner with the goal of improving efficiency, safety, and/or costs for the industry. Teams are encouraged to consider high-potential technologies and systems that aren’t currently mainstream or highly regarded as becoming mainstream in the future, imagining beyond the status quo.
      Award: $72,000 in total prizes
      Open Date: Phase 1 – September 18, 2025; Phase 2 – March 13, 2026
      Close Date: Phase 1 – February 16, 2026; Phase 2- May 15, 2026
      For more information, visit: https://blueskies.nianet.org/competition/
      View the full article
    • By NASA
      An artist’s concept of a supermassive black hole, a surrounding disk of material falling towards the black hole and a jet containing particles moving away at close to the speed of light. This black hole represents a recently-discovered quasar powered by a black hole. New Chandra observations indicate that the black hole is growing at a rate that exceeds the usual limit for black holes, called the Eddington Limit. Credit: NASA/CXC/SAO/M. WeissX-ray: NASA/CXC/INAF-Brera/L. Ighina et al.; Illustration: NASA/CXC/SAO/M. Weiss; Image Processing: NASA/CXC/SAO/N. Wolk A black hole is growing at one of the fastest rates ever recorded, according to a team of astronomers. This discovery from NASA’s Chandra X-ray Observatory may help explain how some black holes can reach enormous masses relatively quickly after the big bang.
      The black hole weighs about a billion times the mass of the Sun and is located about 12.8 billion light-years from Earth, meaning that astronomers are seeing it only 920 million years after the universe began. It is producing more X-rays than any other black hole seen in the first billion years of the universe.
      The black hole is powering what scientists call a quasar, an extremely bright object that outshines entire galaxies. The power source of this glowing monster is large amounts of matter funneling around and entering the black hole.
      While the same team discovered it two years ago, it took observations from Chandra in 2023 to discover what sets this quasar, RACS J0320-35, apart. The X-ray data reveal that this black hole appears to be growing at a rate that exceeds the normal limit for these objects.
      “It was a bit shocking to see this black hole growing by leaps and bounds,” said Luca Ighina of the Center for Astrophysics | Harvard & Smithsonian in Cambridge, Massachusetts, who led the study.
      When matter is pulled toward a black hole it is heated and produces intense radiation over a broad spectrum, including X-rays and optical light. This radiation creates pressure on the infalling material. When the rate of infalling matter reaches a critical value, the radiation pressure balances the black hole’s gravity, and matter cannot normally fall inwards any more rapidly. That maximum is referred to as the Eddington limit.
      Scientists think that black holes growing more slowly than the Eddington limit need to be born with masses of about 10,000 Suns or more so they can reach a billion solar masses within a billion years after the big bang — as has been observed in RACS J0320-35. A black hole with such a high birth mass could directly result from an exotic process: the collapse of a huge cloud of dense gas containing unusually low amounts of elements heavier than helium, conditions that may be extremely rare.
      If RACS J0320-35 is indeed growing at a high rate — estimated at 2.4 times the Eddington limit — and has done so for a sustained amount of time, its black hole could have started out in a more conventional way, with a mass less than a hundred Suns, caused by the implosion of a massive star.
      “By knowing the mass of the black hole and working out how quickly it’s growing, we’re able to work backward to estimate how massive it could have been at birth,” said co-author Alberto Moretti of INAF-Osservatorio Astronomico di Brera in Italy. “With this calculation we can now test different ideas on how black holes are born.”
      To figure out how fast this black hole is growing (between 300 and 3,000 Suns per year), the researchers compared theoretical models with the X-ray signature, or spectrum, from Chandra, which gives the amounts of X-rays at different energies. They found the Chandra spectrum closely matched what they expected from models of a black hole growing faster than the Eddington limit. Data from optical and infrared light also supports the interpretation that this black hole is packing on weight faster than the Eddington limit allows.
      “How did the universe create the first generation of black holes?” said co-author Thomas of Connor, also of the Center for Astrophysics. “This remains one of the biggest questions in astrophysics and this one object is helping us chase down the answer.”
      Another scientific mystery addressed by this result concerns the cause of jets of particles that move away from some black holes at close to the speed of light, as seen in RACS J0320-35. Jets like this are rare for quasars, which may mean that the rapid rate of growth of the black hole is somehow contributing to the creation of these jets.
      The quasar was previously discovered as part of a radio telescope survey using the Australian Square Kilometer Array Pathfinder, combined with optical data from the Dark Energy Camera, an instrument mounted on the Victor M. Blanco 4-meter Telescope at the Cerro Tololo Inter-American Observatory in Chile. The U.S. National Science Foundation National Optical-Infrared Astronomy Research Laboratory’s Gemini-South Telescope on Cerro Pachon, Chile was used to obtain the accurate distance of RACS J0320-35.
      A paper describing these results has been accepted for publication in The Astrophysical Journal and is available here.
      NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features a quasar located 12.8 billion light-years from Earth, presented as an artist’s illustration and an X-ray image from NASA’s Chandra X-ray Observatory.
      In the artist’s illustration, the quasar, RACS J0320-35, sits at our upper left, filling the left side of the image. It resembles a spiraling, motion-blurred disk of orange, red, and yellow streaks. At the center of the disk, surrounded by a glowing, sparking, brilliant yellow light, is a black egg shape. This is a black hole, one of the fastest-growing black holes ever detected. The black hole is also shown in a small Chandra X-ray image inset at our upper right. In that depiction, the black hole appears as a white dot with an outer ring of neon purple.
      The artist’s illustration also highlights a jet of particles blasting away from the black hole at the center of the quasar. The streaked silver beam starts at the core of the distant quasar, near our upper left, and shoots down toward our lower right. The blurry beam of energetic particles appears to widen as it draws closer and exits the image.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Corinne Beckinger
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      corinne.m.beckinger@nasa.gov
      Share
      Details
      Last Updated Sep 18, 2025 EditorLee MohonContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Chandra X-Ray Observatory Astrophysics Black Holes Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research Marshall Astrophysics Marshall Space Flight Center Quasars Science & Research Supermassive Black Holes The Universe Explore More
      5 min read New NASA Mission to Reveal Earth’s Invisible ‘Halo’
      A new NASA mission will capture images of Earth’s invisible “halo,” the faint light given…
      Article 2 hours ago 5 min read NASA’s Hubble Sees White Dwarf Eating Piece of Pluto-Like Object
      In our nearby stellar neighborhood, a burned-out star is snacking on a fragment of a…
      Article 4 hours ago 4 min read NASA Artemis II Moon Rocket Ready to Fly Crew
      Article 21 hours ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA Selects 2025 Astronaut Candidates
  • Check out these Videos

×
×
  • Create New...