Members Can Post Anonymously On This Site
Earth from Space: Strait of Gibraltar
-
Similar Topics
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Instruments in space are helping scientists map wastewater plumes flowing into the Pacific Ocean from the heavily polluted Tijuana River, seen here with the San Diego sky-line to the north. NOAA Proof-of-concept results from the mouth of the Tijuana River in San Diego County show how an instrument called EMIT could aid wastewater detection.
An instrument built at NASA’s Jet Propulsion Laboratory to map minerals on Earth is now revealing clues about water quality. A recent study found that EMIT (Earth Surface Mineral Dust Source Investigation) was able to identify signs of sewage in the water at a Southern California beach.
The authors of the study examined a large wastewater plume at the mouth of the Tijuana River, south of Imperial Beach near San Diego. Every year, millions of gallons of treated and untreated sewage enter the river, which carries pollutants through communities and a national reserve on the U.S.-Mexico border before emptying into the Pacific Ocean. Contaminated coastal waters have been known to impact human health — from beachgoers to U.S. Navy trainees — and harm marine ecosystems, fisheries, and wildlife.
For decades scientists have tracked water quality issues like harmful algal blooms using satellite instruments that analyze ocean color. Shades that range from vibrant red to bright green can reveal the presence of algae and phytoplankton. But other pollutants and harmful bacteria are more difficult to monitor because they’re harder to distinguish with traditional satellite sensors.
A plume spreads out to sea in this image captured off San Diego by the Sentinel-2 satellite on March 24, 2023. Both a spectroradiometer used to analyze water samples (yellow star) and NASA’s EMIT identified in the plume signs of a type of bacterium that can sicken humans and animals.SDSU/Eva Scrivner That’s where EMIT comes in. NASA’s hyperspectral instrument orbits Earth aboard the International Space Station, observing sunlight reflecting off the planet below. Its advanced optical components split the visible and infrared wavelengths into hundreds of color bands. By analyzing each satellite scene pixel by pixel at finer spatial resolution, scientists can discern what molecules are present based on their unique spectral “fingerprint.”
Scientists compared EMIT’s observations of the Tijuana River plume with water samples they tested on the ground. Both EMIT and the ground-based instruments detected a spectral fingerprint pointing to phycocyanin, a pigment in cyanobacteria, an organism that can sicken humans and animals that ingest or inhale it.
‘Smoking Gun’
Many beachgoers are already familiar with online water-quality dashboards, which often rely on samples collected in the field, said Christine Lee, a scientist at JPL in Southern California and a coauthor of the study. She noted the potential for EMIT to complement these efforts.
“From orbit you are able to look down and see that a wastewater plume is extending into places you haven’t sampled,” Lee said. “It’s like a diagnostic at the doctor’s office that tells you, ‘Hey, let’s take a closer look at this.’”
Lead author Eva Scrivner, a doctoral student at the University of Connecticut, said that the findings “show a ‘smoking gun’ of sorts for wastewater in the Tijuana River plume.” Scrivner, who led the study while at San Diego State University, added that EMIT could be useful for filling data gaps around intensely polluted sites where traditional water sampling takes a lot of time and money.
EMIT’s Many Uses
The technology behind EMIT is called imaging spectroscopy, which was pioneered at JPL in the 1980s. Imaging spectrometers developed at JPL over the decades have been used to support areas ranging from agriculture to forest health and firefighting.
When EMIT was launched in July 2022, it was solely aimed at mapping minerals and dust in Earth’s desert regions. That same sensitivity enabled it to spot the phycocyanin pigments off the California coast.
Scrivner hadn’t anticipated that an instrument initially devoted to exploring land could reveal insights about water. “The fact that EMIT’s findings over the coast are consistent with measurements in the field is compelling to water scientists,” she said. “It’s really exciting.”
To learn more about EMIT, visit:
https://earth.jpl.nasa.gov/emit/
News Media Contacts
Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
626-379-6874 / 818-354-0307
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
Written by Sally Younger
2025-078
Share
Details
Last Updated Jun 12, 2025 Related Terms
EMIT (Earth Surface Mineral Dust Source Investigation) Earth Earth Science Technology Office Human Dimensions International Space Station (ISS) Oceans Water on Earth Explore More
3 min read Studying Storms from Space Station
Article 4 hours ago 4 min read Welcome Home, Expedition 72 Crew!
Article 21 hours ago 6 min read NASA’s Ready-to-Use Dataset Details Land Motion Across North America
Article 6 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
3 Min Read Studying Storms from Space Station
An artist’s impression of a blue jet as observed from the space station. Credits: Mount Visual/University of Bergen/DTU Science in Space June 2025
Scientists use instruments on the International Space Station to study phenomena in Earth’s ionosphere or upper atmosphere including thunderstorms, lightning, and transient luminous events (TLEs). TLEs take many forms, including blue jets, discharges that grow upward into the stratosphere from cloud tops, and colorful bursts of energy above storms called Stratospheric/Mesospheric Perturbations Resulting from Intense Thunderstorm Electrification or SPRITES.
Red SPRITES are visible above a line of thunderstorms off the coast of South Africa.NASA TLEs can disrupt communication systems on the ground and pose a threat to aircraft and spacecraft. Understanding these phenomena also could improve atmospheric models and weather predictions. Because these events occur well above the altitudes of normal lightning and storm clouds, they are difficult to observe from the ground. ASIM, an investigation from ESA (European Space Agency), uses a monitor on the exterior of the space station to collect data on TLEs. These data are providing insights into how thunderstorms affect Earth’s atmosphere and helping to improve atmospheric models used for weather and climate predictions.
ELVES and coronas
A study based on ASIM data confirmed that lightning-like discharges at the tops of thunderstorms can create another type of TLE, massive glowing rings in the upper atmosphere known as Emissions of Light and VLF Perturbations from EMP events, or ELVES. This experiment showed that these discharges influence the ionosphere and helped scientists learn more about Earth and space weather.
ASIM-based research also described the physical properties of different types of corona discharges in thunderstorm clouds. Corona discharges are linked to powerful but short-lived electrical bursts near the tops of clouds. The data provide a reference to support further investigation into the mechanisms behind these discharges and their role in the initiation of lightning, an important problem in lightning physics.
Other researchers used ASIM measurements along with ground-based electric field measurements to determine the height of a blue discharge from a thundercloud.
Cloud close-ups
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Lightning on Earth as captured from the space station.NASA Another ESA investigation, Thor-Davis, evaluated use of a special camera to photograph high-altitude thunderstorms through the windows of the space station’s cupola. The camera can observe thunderstorm electrical activity at up to 100,000 frames per second and could be a useful tool for space-based observation of severe electrical storms and other applications.
Seeing storms from satellites
Deployment of the Light-1 CubeSat from the space station.NASA The JAXA (Japan Aerospace Exploration Agency) investigation Light-1 CubeSat used detectors integrated into a compact satellite to observe terrestrial gamma-ray flashes in the upper atmosphere. These high intensity, energetic events can expose aircraft, aircraft electronics, and passengers to excessive radiation. Researchers are planning to compare data collected from the mission with ground-based observations to provide more comprehensive maps of lightning and thunderstorms in the atmosphere. Small satellite detectors could cost less and be manufactured in less time than other approaches.
Keep Exploring Discover More Topics From NASA
Space Station Research and Technology
Space Station Research Results
Latest News from Space Station Research
Station Researcher’s Guide Series
View the full article
-
By NASA
What does it take to gaze through time to our universe’s very first stars and galaxies?
NASA answers this question in its new documentary, “Cosmic Dawn: The Untold Story of the James Webb Space Telescope.” The agency’s original documentary, which chronicles the story of the most powerful telescope ever deployed in space, was released Wednesday, June 11.
Cosmic Dawn offers an unprecedented glimpse into the delicate assembly, rigorous testing, and triumphant launch of NASA’s James Webb Space Telescope. The documentary showcases the complexity involved in creating a telescope capable of peering billions of years into the past.
Cosmic Dawn is now available for streaming on NASA’s YouTube, NASA+, and select local theaters. The trailer is available on NASA+ and YouTube.
Relive the pitfalls and the triumphs of the world’s most powerful space telescope—from developing the idea of an impossible machine to watching with bated breath as it unfolded, hurtling through space a million miles away from Earth. Watch the Documentary on YouTube The film features never-before-seen footage captured by the Webb film crew, offering intimate access to the challenges and triumphs faced by the team at NASA’s Goddard Space Flight Center in Greenbelt, Maryland — the birthplace of Webb.
“At NASA, we’re thrilled to share the untold story of our James Webb Space Telescope in our new film ‘Cosmic Dawn,’ celebrating not just the discoveries, but the extraordinary people who made it all happen, for the benefit of humanity,” said Rebecca Sirmons, head of NASA+ at the agency’s headquarters in Washington.
From its vantage point more than a million miles from Earth and a massive sunshield to block the light of our star, Webb’s First Deep Field the deepest and sharpest infrared images of the universe that the world had seen.
Webb’s images have dazzled people around the globe, capturing the very faint light of the first stars and galaxies that formed more than 13.5 billion years ago. These are baby pictures from an ancient past when the first objects were turning on and emitting light after the Big Bang. Webb has also given us new insights into black holes, planets both inside and outside of our own solar system, and many other cosmic phenomena.
Webb was a mission that was going to be spectacular whether that was good or bad — if it failed or was successful. It was always going to make history
Sophia roberts
NASA Video Producer
NASA’s biggest and most powerful space telescope was also its most technically complicated to build. It was harder still to deploy, with more than 300 critical components that had to deploy perfectly. The risks were high in this complicated dance of engineering, but the rewards were so much higher.
“Webb was a mission that was going to be spectacular whether that was good or bad — if it failed or was successful,” said video producer Sophia Roberts, who chronicled the five years preceding Webb’s launch. “It was always going to make history.”
NASA scientists like Nobel Laureate Dr. John Mather conceived Webb to look farther and deeper into origins of our universe using cutting edge infrared technology and massive mirrors to collect incredibly rich information about our universe, from the light of the first galaxies to detailed images of planets in our own solar system.
To achieve this goal, NASA and its partners faced unprecedented hurdles.
Webb’s development introduced questions that no one had asked before. How do you fit a telescope with the footprint of a tennis court into a rocket? How do you clean 18 sensitive mirrors when a single scratch could render them inoperable? How do you maintain critical testing while hurricane stormwater pours through ceilings?
A technician inspects the James Webb Space Telescope primary mirrors at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.NASA/Sophia Roberts Cosmic Dawn captures 25 years of formidable design constraints, high-stake assessments, devastating natural disasters, a global pandemic and determined individuals who would let none of that get in the way of getting this monumental observatory to its rightful place in the cosmos.
“There was nothing easy about Webb at all,” said Webb project manager Bill Ochs. “I don’t care what aspect of the mission you looked at.”
Viewers will experience a one-of-a-kind journey as NASA and its partners tackle these dilemmas — and more — through ingenuity, teamwork, and unbreakable determination.
“The inspiration of trying to discover something — to build something that’s never been built before, to discover something that’s never been known before — it keeps us going,” Mather said. “We are pleased and privileged in our position here at NASA to be able to carry out this [purpose] on behalf of the country and the world.”
Bound by NASA’s 66-year commitment to document and share its work with the public, Cosmic Dawn details every step toward Webb’s launch and science results.
Learn more at nasa.gov/cosmicdawn By Laine Havens,
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Katie Konans,
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Jun 11, 2025 Related Terms
James Webb Space Telescope (JWST) Goddard Space Flight Center NASA+ View the full article
-
By NASA
Explore This Section Earth Earth Observer Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam Announcements More Archives Conference Schedules Style Guide 9 min read
The Earth Observer Editor’s Corner: April–June 2025
NASA’s Earth science missions have continued to demonstrate remarkable adaptability and innovation, balancing the legacy of long-standing satellites with the momentum of cutting-edge new technologies. The Terra platform, the first of three Earth Observing System flagship missions, has been in orbit since December 1999. Over a quarter-century later, four of its five instruments continue to deliver valuable data, despite recent power challenges. As of this writing, Terra’s Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) – Visible–Near Infrared (VNIR) and Thermal Infrared (TIR) bands, Multi-angle Imaging SpectroRadiometer (MISR), Moderate Resolution Imaging Spectroradiometer (MODIS), and one of the two Clouds and the Earth’s Radiant Energy Systems (CERES) instruments onboard, are all still producing science data. For reasons explained below, only the Measurement of Pollution in the Troposphere (MOPITT) instrument has been shut down completely, after 25 years of successful operations. The longevity of the Terra instruments is credited to Terra’s instrument team members, who have skillfully adjusted operations to compensate for the reduction in power and extend Terra’s scientific contributions for as long as possible.
Terra has been experiencing power-based limitations caused by platform orbital changes and solar array impacts. On November 28, 2024, one of Terra’s power-transmitting shunt units failed. A response team reviewed Terra’s status, and discussed potential impacts and options. Consequently, the team changed the battery charge rate and reduced spacecraft power demands by placing the ASTER instrument into safe mode.
In order to maintain power margins, the Terra team also moved the MOPITT instrument from science mode into safe mode on February 4, 2025, ceasing data collection. On April 9, 2025, the Terra project determined that additional power was needed for the platform and MOPITT was moved from safe mode and fully turned off, ending the instrument’s carbon monoxide data record of near-global coverage every three days.
MOPITT was the Canadian Space Agency’s (CSA) contribution to the Earth Observing System. Launched as part of Terra’s payload in 1999, it became the longest-running air quality monitor in space, and the longest continuously operating Canadian space mission in history. MOPITT’s specific focus was on the distribution, transport, sources, and sinks of carbon monoxide (CO) in the troposphere – see Figure. The spectrometer’s marquee Earthdata products have included MOPITT Near Real-Time Datasets and offerings from the MOPITT Science Investigator-led Processing System (MOPITT SIPS). From tracking pollution from wildfires to providing data that informs international climate agreements, MOPITT served as a powerful tool for gathering data about pollution in the lowest portion of Earth’s atmosphere, informing research, policies, and even helping to advance forecasting models used by scientists worldwide. Congratulations to the MOPITT team for more than 25 years of groundbreaking science and international collaboration!
To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video
Figure. This data visualization of total column carbon monoxide was created using MOPITT data from 2000-2019. In these maps, yellow areas have little or no carbon monoxide, while progressively higher concentrations are shown in orange, red, and dark red. Figure Credit: NASA’s Goddard Space Flight Center/SVS As chance would have it, the MOPITT Team had planned a 25th anniversary celebration in April, 10–11, 2025, at CSA headquarters in Longueuil, Quebec and online – which began one day after the instrument was shut down. The celebration was a fitting closeout to the MOPITT mission and a celebration of its accomplishments. Over the two days, more than 45 speakers shared memories and presented findings from MOPITT’s quarter-century record of atmospheric carbon monoxide monitoring. Its data showed a global decline in carbon monoxide emissions over two decades and could also track the atmospheric transport of the gas from fires and industry from individual regions. MOPITT is a testament to remarkable international collaboration and achievement. As it is officially decommissioned, its data record will continue to drive research for years to come.
The Director General of the Canadian Space Agency—a key MOPITT partner—delivered remarks, and both Ken Jucks [NASA HQ— Program Manager for the Upper Atmosphere Research Program (UARP)] and Helen Worden [National Center for Atmospheric Research— MOPITT U.S. Principal Investigator] attended representing the U.S.
More information is available in a recently-released Terra blog post and on the Canadian Space Agency MOPITT website.
After continued investigation and monitoring of platform battery status, the Terra Flight Operations Team (FOT) determined there was sufficient power to resume imaging with ASTER’s VNIR bands, and as a result, ASTER once again began collecting VNIR data on January 17, 2025. Subsequently, ASTER resumed acquisitions for the TIR bands on April 15, 2025. (The ASTER Shortwave Infrared (SWIR) bands have been shut down since 2008).
As one long-serving mission sunsets its operations, new missions are stepping in to carry forward the legacy of Earth system science with fresh capabilities and approaches. Launched on May 25, 2023, the NASA Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission provides a groundbreaking approach to studying tropical cyclones using a passive microwave sounder CubeSat constellation. TROPICS uses multiple small satellites flying in a carefully engineered formation to measure precipitation structure as well as temperature and humidity profiles both within and outside of storms.
Unlike traditional polar-orbiting satellites, TROPICS’ low-inclination orbits allow for hourly revisits over tropical regions, enabling scientists to better monitor storm structure, intensity changes, and key processes like upper-level warm core formation and convective bursts.
The mission has already significantly contributed to operational forecasting and scientific research. With over 10 billion observations to date, TROPICS data have been used to validate storm models, support early-warning systems, and improve forecasts for events like Hurricane Franklin and Typhoon Kong-rey. Collaborations with agencies like the National Hurricane Center and the Joint Typhoon Warning Center have shown the value of TROPICS channels, particularly the 204.8 GHz channel, in identifying storm structure and intensity. The data are publicly available through the Goddard Earth Sciences Data and Information Services Center (GES DISC), and TROPICS continues to set the stage for the next generation of rapid-revisit Earth observation missions. To read more about the last two years of successful science operations with TROPICS, see NASA’s TROPICS Mission: Offering Detailed Images and Analysis of Tropical Cyclones.
While some missions focus on monitoring atmospheric processes, others are expanding the frontiers of Earth observation in entirely different domains—ranging from seafloor mapping to land surface monitoring and beyond. NASA’s Ice, Clouds, and land Elevation Satellite–2 (ICESat-2) mission continues to provide critical data on Earth’s changing ice sheets, glaciers, and other environmental features. In March 2025, the satellite achieved a significant milestone by firing its two trillionth laser pulse, measuring clouds off the coast of East Antarctica. Despite challenges, such as a solar storm in May 2024 that temporarily disrupted operations, the mission has resumed full functionality, providing high-resolution data that has enabled scientists to map over 16 years of ice sheet changes. The mission’s advanced laser altimeter system, ATLAS, continues to deliver unprecedented detail in monitoring Earth’s changing ice sheets, glaciers, forests, and ocean floor.
The ICESat-2 Satellite-Derived Bathymetry (SDB) workshop, held on March 17, 2025, in conjunction with the US-Hydro meeting, brought together experts and stakeholders from government, academia, and industry to explore the current capabilities and future potential of satellite-based seafloor mapping. With over 2000 journal articles referencing ICESat-2 in the context of bathymetry, the workshop underscored the growing importance of this technology in coastal management, navigation, habitat monitoring, and disaster response. For more details, see the ICESat-2 Applications Team Hosts Satellite Bathymetry Workshop report.
As satellite technologies continue to evolve, so do the scientific communities that rely on them, bringing researchers together to share insights, refine data products, and explore new applications across a range of Earth and atmospheric science disciplines. As of early 2025, NASA’s Stratospheric Aerosol and Gas Experiment III (SAGE III) aboard the International Space Station (ISS) continues to provide critical insights into Earth’s atmospheric composition. In addition to scientific advancements, SAGE III/ISS has enhanced public accessibility to its data. In February 2025, the mission launched updates to its Quicklook and Expedited data portal, introducing a new ‘Highlights’ tab to showcase major stratospheric events and a ‘Comparisons’ tab for validating measurements with ground-based stations. These enhancements aim to make SAGE III/ISS data more accessible and increase its utilization for atmospheric research.
The most recent SAGE III/ISS Science Team Meeting took place in October 2024 at NASA Langley Research Center and was held in hybrid format. Around 50 scientists gathered to discuss recent advancements, mission updates, and future directions in upper troposphere–stratosphere (UTS) research. The SAGE III/ISS team celebrated eight years of continuous data collection aboard the ISS and presented Version 6.0 of SAGE III/ISS data products during the meeting, which addresses previous data biases and enhances aerosol profile recovery. Presentations also covered aerosol and cloud studies, lunar-based aerosol retrievals, and collaborative projects using data from multiple satellite platforms and instruments. To learn more, see the full Summary of the 2024 SAGE III/ISS Meeting.
Moving on to personnel announcements, I wish to extend my condolences to the friends and family of Dr. Stanley Sander, who passed away in March 2025. Sander devoted over 50 years to atmospheric science at NASA’s Jet Propulsion Laboratory, making groundbreaking contributions to stratospheric ozone research, air pollution, and climate science. His precise laboratory work on reaction kinetics and spectroscopy became foundational for atmospheric modeling and environmental policy, including the Montreal Protocol. Sander also played a key role in satellite calibration, mentored dozens of young scientists, and held several leadership positions at JPL. Remembered for his brilliance, humility, and kindness, his legacy endures through both his scientific achievements and the many lives he influenced. See In Memoriam: Dr. Stanley Sander.
On a happier, though bittersweet, note, my congratulations to Jack Kaye [NASA HQ—Associate Director for Research, Earth Science Division (ESD)] who retired from NASA on April 30, 2025, after 42 years of distinguished service. With a background in chemistry and atmospheric science, he played a leading role in NASA’s efforts to understand Earth’s atmosphere and climate using satellite data and modeling. Throughout his career, Kaye has held various key leadership positions, managed major missions, e.g., the series of Shuttle-based Atmospheric Laboratory of Applications and Science (ATLAS) experiments, and supported the development of early-career scientists. He also represented NASA in national and international science collaborations and advisory roles. Kaye received numerous awards, published extensively, and was widely recognized for his contributions to Earth science and global climate research. I extend my sincere thanks to Jack for his many years of vital leadership and lasting contributions to the global Earth science community!
Barry Lefer [NASA HQ—Tropospheric Composition Program Manager] has taken over as Acting Associate Director for Research in ESD. Reflecting on Kaye’s impact, Lefer said, “Jack has been a wonderful friend and mentor. The one thing about Jack that has had the biggest impact on me (besides his incredible memory) is his kindness. He has an enormous heart. He will be missed, but his impact on Earth Science will endure for a very long time!” See the full announcement, Jack Kaye Retires After a Storied Career at NASA.
Steve Platnick
EOS Senior Project Scientist
Share
Details
Last Updated Jun 11, 2025 Related Terms
Earth Science View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.