Jump to content

NASA Invites Media to Joint Launch of Sun, Space Weather Missions


Recommended Posts

  • Publishers
Posted
Technicians conduct blanket closeout work on NASA’s IMAP (Interstellar Mapping and Acceleration Probe) observatory at the Astrotech Space Operations Facility near NASA’s Kennedy Space Center in Florida on Friday, Aug. 15, 2025. The IMAP mission will explore and map the boundaries of the heliosphere — a huge bubble created by the Sun’s wind that encapsulates our entire solar system — and study how the heliosphere interacts with the local galactic neighborhood beyond.
Technicians conduct blanket closeout work on NASA’s IMAP (Interstellar Mapping and Acceleration Probe) observatory at the Astrotech Space Operations Facility near NASA’s Kennedy Space Center in Florida on Friday, Aug. 15, 2025. The IMAP mission will explore and map the boundaries of the heliosphere — a huge bubble created by the Sun’s wind that encapsulates our entire solar system — and study how the heliosphere interacts with the local galactic neighborhood beyond.
Credit: NASA/Kim Shiflett

Media accreditation is open for the launch of three observatories that will study the Sun and enhance the ability to make accurate space weather forecasts, helping protect technology systems that affect life on Earth.

NASA is targeting no earlier than Tuesday, Sept. 23, for the launch of the agency’s IMAP (Interstellar Mapping and Acceleration Probe), the Carruthers Geocorona Observatory, and National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Follow On–Lagrange 1 (SWFO-L1) observatory. The observatories will launch aboard a SpaceX Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

Accredited media will have the opportunity to participate in prelaunch briefings and interviews with key mission personnel prior to launch, as well as cover the launch. NASA will communicate additional details regarding the media event schedule as the launch date approaches.

Media accreditation deadlines for the launch are as follows:

  • International media without U.S. citizenship must apply by 11:59 p.m. EDT on Sunday, Aug. 31.
  • U.S. media and U.S. citizens representing international media organizations must apply by 11:59 p.m. on Thursday, Sept. 4.

All accreditation requests must be submitted online at:

https://media.ksc.nasa.gov

NASA’s media accreditation policy is available online. For questions about accreditation, please email: ksc-media-accreditat@mail.nasa.gov. For other mission questions, please contact the NASA Kennedy newsroom at 321-867-2468.

Para obtener información en español en sobre el Centro Espacial Kennedy, comuníquese con Antonia Jaramillo: 321-501-8425. Si desea solicitar entrevistas en español sobre IMAP, póngase en contacto con María-José Viñas: maria-jose.vinasgarcia@nasa.gov

NASA’s IMAP will use 10 science instruments to study and map the heliosphere, a vast magnetic bubble surrounding the Sun protecting our solar system from radiation incoming from interstellar space. This mission and its two rideshares will orbit the Sun near Lagrange point 1, about one million miles from Earth, where it will scan the heliosphere, analyze the composition of charged particles, and investigate how those particles move through the solar system. This will provide information on how the Sun accelerates charged particles, filling in essential puzzle pieces to understand the space weather environment across the solar system. The IMAP spacecraft also will continuously monitor solar wind and cosmic radiation. Scientists can use this information to evaluate new and improved capabilities for space weather prediction tools and models, which are vital for the health of human space explorers and the longevity of technological systems, like satellites and power grids, that can affect life on Earth.

The agency’s Carruthers Geocorona Observatory is a small satellite set to study the exosphere, the outermost part of Earth’s atmosphere. Using ultraviolet cameras, it will monitor how space weather from the Sun impacts the exosphere, which plays a crucial role in protecting Earth from space weather events that can affect satellites, communications, and power lines. The exosphere, a cloud of neutral hydrogen extending to the Moon and possibly beyond, is created by the breakdown of water and methane by ultraviolet light from the Sun, and its glow, known as the geocorona, has been observed globally only four times before this mission.

The SWFO-L1 mission, managed by NOAA and developed with NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and commercial partners, will use a suite of instruments to provide real-time measurements of solar wind, along with a compact coronagraph to detect coronal mass ejections from the Sun. The observatory, serving as an early warning beacon for potentially destructive space weather events, will enable faster and more accurate forecasts. Its 24/7 data will support NOAA’s Space Weather Prediction Center in protecting vital infrastructure, economic interests, and national security, both on Earth and in space.

David McComas, professor, Princeton University, leads the IMAP mission with an international team of 25 partner institutions. The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, built the spacecraft and operates the mission. NASA’s IMAP is the fifth mission in NASA’s Solar Terrestrial Probes program portfolio. The Explorers and Heliophysics Project Division at NASA Goddard manages the program for the agency’s Heliophysics Division of NASA’s Science Mission Directorate.

NASA’s Launch Services Program, based at NASA Kennedy, manages the launch service for the mission.

For more details about the IMAP mission and updates on launch preparations, visit:

https://science.nasa.gov/mission/imap/

-end-

Abbey Interrante
Headquarters, Washington
301-201-0124
abbey.a.interrante@nasa.gov

Sarah Frazier
Goddard Space Flight Center, Greenbelt, Md.
202-853-7191
sarah.frazier@nasa.gov

Leejay Lockhart
Kennedy Space Center, Fla.
321-747-8310
leejay.lockhart@nasa.gov

John Jones-Bateman
NOAA’s Satellite and Information Service, Silver Spring, Md.
202-242-0929
john.jones-bateman@noaa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s SpaceX 33rd commercial resupply mission will launch on the company’s Dragon spacecraft on the SpaceX Falcon 9 rocket to deliver research and supplies to the International Space StationNASA NASA and SpaceX are targeting no earlier than 2:45 a.m. EDT on Sunday, Aug. 24, for the next launch to deliver scientific investigations, supplies, and equipment to the International Space Station.
      Filled with more than 5,000 pounds of supplies, the SpaceX Dragon spacecraft, on the company’s Falcon 9 rocket, will lift off from Launch Complex 40 at Cape Canaveral Space Force Station in Florida. Dragon will dock autonomously about 7:30 a.m. on Monday, Aug. 25, to the forward port of the space station’s Harmony module.
      NASA’s SpaceX 33rd commercial resupply mission will launch from Launch Complex 40 at Cape Canaveral Space Force Station in Florida.NASA This launch is the 33rd SpaceX commercial resupply services mission to the orbital laboratory for the agency, and the 13th SpaceX launch under the Commercial Resupply Services-2 contract. The first 20 launches were under the original resupply services contract.
      Watch agency launch and arrival coverage on NASA+, Netflix, Amazon Prime, and more. Learn how to watch NASA content through a variety of platforms, including social media.
      NASA’s live launch coverage will begin at 2:25 a.m. on Aug 24. Dragon’s arrival coverage will begin at 6 a.m. on Aug. 25. For nearly 25 years, the International Space Station has provided research capabilities used by scientists from over 110 countries to conduct more than 4,000 groundbreaking experiments in microgravity. Research conducted aboard the space station advances Artemis missions to the Moon and human exploration of Mars, while providing multiple benefits to humanity.
      Arrival & Departure
      The SpaceX Dragon spacecraft will arrive at the space station and dock autonomously to the forward port of the station’s Harmony module at approximately 7:30 a.m. on Monday, Aug. 25. NASA astronauts Mike Fincke and Jonny Kim will monitor the spacecraft’s arrival. It will stay docked to the orbiting laboratory for about four months before splashing down and returning critical science and hardware to teams on Earth.
      NASA astronauts Mike Fincke and Jonny Kim will monitor the arrival of the SpaceX Dragon cargo spacecraft from the International Space Station.NASA Research Highlights
      Preventing bone loss in space
      Microgravity Associated Bone Loss-B (MABL-B) assesses the effects of microgravity on bone marrow stem cells and may provide a better understanding of the basic molecular mechanisms of bone loss that occurs during spaceflight and from normal aging on Earth.NASA A study of bone-forming stem cells in microgravity could provide insight into the basic mechanisms of the bone loss astronauts experience during long-duration space flight ahead of future exploration of the Moon and Mars.
      Researchers identified a protein in the body called IL-6 that can send signals to stem cells to promote either bone formation or bone loss. This work evaluates whether blocking IL-6 signals could reduce bone loss during spaceflight. Results could improve our understanding of bone loss on Earth due to aging or disease and lead to new prevention and treatment strategies.
      Printing parts, tools in space
      Printing parts, tools in space
      The objective of the Metal 3D printer aboard the International Space Station is to gain experience with operating and evaluating the manufacturing of spare parts in microgravity to support long duration space missions.NASA As mission duration and distance from Earth increase, resupply becomes harder. Additive manufacturing, or 3D printing, could be used to make parts and dedicated tools on demand, enhancing mission autonomy.
      Research aboard the space station has made strides in 3D printing with plastic, but it is not suitable for all uses. Investigations from ESA’s (European Space Agency) Metal 3D Printer builds on recent successful printing of the first metal parts in space.
      Bioprinting tissue in microgravity
      Maturation of Vascularized Liver Tissue Construct in Zero Gravity (MVP Cell-07) is a biotechnology experiment studying bioprinted, or lab grown, liver tissues complete with blood vessels in space. The results could improve astronaut health on long missions and lead to new ways to treat patients on Earth.NASA Researchers plan to bioprint liver tissue containing blood vessels on the ground and examine how the tissue develops in microgravity. Results could help support the eventual production of entire functional organs for transplantation on Earth.
      A previous mission tested whether this bioprinted liver tissue survived and functioned in space. This experimental round could show whether microgravity improves the development of the bioprinted tissue.
      Biomanufacturing drug-delivery medical devices
      The InSPA-Auxilium Bioprinter will test 3D printing medical implant devices designed to deliver drugs and treat various health conditions such as nerve inuries. Printing on the International Space Station may produce higher-quality devices than on Earth.NASA Scientists are creating an implantable device in microgravity that could support nerve regrowth after injuries. The device is created through bioprinting, a type of 3D printing that uses living cells or proteins as raw materials.
      Traumatic injuries can create gaps between nerves, and existing treatments have a limited ability to restore nerve function and may result in impaired physical function. A bioprinted device to bridge nerve gaps could accelerate recovery and preserve function.
      Cargo Highlights
      NASA’s SpaceX 33rd commercial resupply mission will carry over 5,000 pounds of cargo to the International Space Station.NASA Hardware
      Launch:
      Reboost Kit – This kit will perform a reboost demonstration of the station to maintain its current altitude. The hardware, located in Dragon’s trunk, contains an independent propellant system, separate from the spacecraft’s main system, to fuel two Draco engines using existing hardware and propellant system design. The boost kit will demonstrate the capability to maintain the orbiting lab’s altitude starting in September with a series of burns planned periodically throughout the fall of 2025. During NASA’s SpaceX 31st commercial resupply services mission, the Dragon spacecraft first demonstrated these capabilities on Nov. 8, 2024. Poly Exercise Rope Kit – These exercise ropes distribute the desired exercise loads through a series of pulleys for the Advanced Restrictive Exercise Device. The ropes have a limited life cycle, and it will be necessary to replace them once they have reached their limit. Brine Filter – These filters remove solid particles from liquid in urine during processing as a part of the station’s water recovery system. Acoustic Monitor – A monitor that measures sound and records the data for download. This monitor will replace the sound level meter and the acoustic dosimeter currently aboard the orbiting laboratory. Multi-filtration Bed – This space unit will support the Water Processor Assembly and continue the International Space Station Program’s effort to replace a fleet of degraded units aboard the station to improve water quality through a single bed. Water Separator Orbital Unit – The unit draws air and condensate mixture from a condensing heat exchanger and separates the two components. The air is returned to the cabin air assembly outlet air-flow stream, and the water is delivered to the condensate bus. This unit launches to maintain in-orbit sparing while another is being returned for repair. Anomaly Gas Analyzer Top Assembly – This battery-powered device detects and monitors gases aboard the station, including oxygen, carbon dioxide, hydrogen chloride, hydrogen fluoride, ammonia, carbon monoxide, and hydrogen cyanide. It also measures cabin pressure, humidity, and temperature. It replaces the Compound Specific Analyzer Combustion Products as the primary tool for detecting airborne chemicals and conditions. Separator Pump (Water Recovery and Management) – This electrically-powered pump separates liquids and gases while rotating. It includes a scoop pump that moves the separated liquid into storage containers for use in other systems. The pump also contains sensor components and a filter to reduce electrical interference from the motor. Launching to maintain in-orbit sparing. Reducer Cylinder Assembly & Emergency Portable Breathing Apparatus – Together, this hardware provides 15 minutes of oxygen to a crew member in case of an emergency (smoke, fire, alarm). Two are launching to maintain a minimum in-orbit spare requirement.  Passive Separator Flight Experiment – This experiment will test a new method for separating urine and air using existing technology that combines a water-repellent urine hose with an airflow separator from the station’s existing Waste Hygiene Compartment. Improved Resupply Water Tanks – Two tanks, each holding approximately 160 pounds of potable water, to supplement the Urine Processing Assembly. NORS (Nitrogen/Oxygen Recharge System) Maintenance Tank/Recharge Tank Assembly, Nitrogen – The NORS maintenance kit comprises two assemblies: the NORS recharge tank assembly and the NORS vehicle interface assembly. The recharge tank assembly will be pressurized with nitrogen gas for launch. The vehicle interface assembly will protect the recharge tank assembly for launch and stowage aboard the space station. Launching to maintain reserve oxygen levels on station. Swab Kits – These quick-disconnect cleaning kits are designed and created to replace in-orbit inventory. Return:
      Oxygen Generation Assembly Pump – The assembly pump converts potable water from the water recovery system into oxygen and hydrogen. The oxygen is sent to the crew cabin, and the hydrogen is either vented or used to produce more water. The International Space Station has been using this process to produce oxygen and hydrogen for 15 years, and this unit will be retired upon its return to Earth. The flight support equipment within will be refurbished and used in a new pump launched aboard a future flight. Carbon Dioxide Monitoring Assembly – A carbon dioxide monitor that measures the gas using the infrared absorption sensor. It expired in July 2025 and will return for refurbishment. Meteoroid Debris Cover Center Section Assembly – This external multilayer insulation provides thermal and micro-meteoroid orbital debris protection on the node port. After it is removed and replaced with a new assembly launching on NASA’s Northrop Grumman 23rd commercial resupply services mission, this unit will return for repair or used for spare parts.   Multi-filtration Bed – This spare unit supports the Water Processor Assembly, which improves water quality aboard the International Space Station. Its return is part of an ongoing effort to replace a degraded fleet of in-orbit units. After its use, this multi-filtration bed will be refurbished for future re-flight. Separator Pump – This electrically powered pump separates liquids and gases while rotating. It includes a scoop pump that moves the separated liquid into storage containers for use in other systems. The pump also contains sensor components and a filter to reduce electrical interference from the motor. This unit is designed to run to failure, and after investigation and testing, it will be returned for repair and future flight. Rate Gyro Enclosure Assembly – The Rate Gyro Assembly determines the space station’s rate of angular motion. It is returning for repair and refurbishment and will be used as a spare. NORS (Nitrogen/Oxygen Recharge System) Maintenance Kit (Oxygen) – The NORS Maintenance Kit comprises two assemblies: the NORS Recharge Tank Assembly and the NORS Vehicle Interface Assembly. The recharge tank assembly will be pressurized with Nitrogen gas for launch. The vehicle interface assembly will protect the recharge tank assembly for launch and stowage aboard the space station. They are routinely returned for reuse and re-flight. The kit also includes a VIA bag (vehicle interface assembly) with foam, which is used as a cargo transfer bag for launch and return to protect the tank. Watch, Engage
      Watch agency launch and arrival coverage on NASA+, Netflix, Amazon Prime, and more. Learn how to watch NASA content through a variety of platforms, including social media.
      NASA’s live launch coverage will begin at 2:25 a.m. on Aug 24. Dragon’s arrival coverage will begin at 6 a.m. on Aug. 25.
      Read more about how to watch and engage.

      View the full article
    • By NASA
      Técnicos trabajan en el cierre del observatorio IMAP (Sonda de Cartografía y Aceleración Interestelar) de la NASA en las instalaciones Astrotech Space Operations Facility, cerca del Centro Espacial Kennedy de la NASA en Florida, el viernes 15 de agosto de 2025. La misión IMAP explorará y cartografiará los límites de la heliosfera —una enorme burbuja creada por el viento solar que encapsula todo nuestro sistema solar— y estudiará cómo interactúa la heliosfera con el vecindario galáctico local más allá de ella.Crédito: NASA/Kim Shiflett Read this release in English here.
      La NASA ha abierto el plazo para la acreditación de los medios para el lanzamiento de tres observatorios que estudiarán el Sol y mejorarán nuestra capacidad de hacer pronósticos precisos de meteorología espacial, ayudando a proteger los sistemas tecnológicos que impactan la vida en la Tierra.
      La NASA tiene previsto lanzar, no antes del martes 23 de septiembre, la sonda IMAP (por las siglas en inglés de Sonda de Cartografía y Aceleración Interestelar) de la agencia, el Observatorio Carruthers de la Geocorona y el observatorio Seguimiento de la Meteorología Espacial–Lagrange 1 (SWFO-L1, por su acrónimo en inglés) de la Administración Nacional Oceánica y Atmosférica (NOAA, por sus siglas en inglés). Los observatorios se lanzarán a bordo de un cohete SpaceX Falcon 9 desde el Complejo de Lanzamiento 39A del Centro Espacial Kennedy de la NASA en Florida.
      Los medios acreditados tendrán la oportunidad de participar en sesiones informativas previas al lanzamiento y entrevistas con miembros clave de la misión antes del lanzamiento, así como de cubrir el lanzamiento. La NASA comunicará más detalles sobre el calendario de eventos para los medios de comunicación a medida que se acerque la fecha del lanzamiento.
      Las fechas límites de acreditación de medios para el lanzamiento son:
      Los miembros de medios de comunicación sin ciudadanía estadounidense deben enviar su solicitud a más tardar a las 11:59 p.m. EDT del domingo, 31 de agosto. Los miembros de medios de comunicación con ciudadanía estadounidense deben enviar su solicitud a más tardar a las 11:59 p.m. EDT del jueves, 4 de septiembre. Todas las solicitudes de acreditación deben enviarse en línea en: 
      https://media.ksc.nasa.gov
      La política de acreditación de medios de la NASA está disponible en línea. Si tiene preguntas sobre el proceso de acreditación, por favor envíelas a: ksc-media-accreditat@mail.nasa.gov. Para otras preguntas, por favor póngase en contacto con el centro de prensa del centro Kennedy de la NASA: +1 321-867-2468.
      Para obtener información en español en sobre el Centro Espacial Kennedy, comuníquese con Antonia Jaramillo: 321-501-8425. Si desea solicitar entrevistas en español sobre IMAP, póngase en contacto con María-José Viñas: maria-jose.vinasgarcia@nasa.gov.  
      La sonda IMAP de la NASA utilizará diez instrumentos científicos para estudiar y mapear la heliosfera, una vasta burbuja magnética que rodea al Sol y protege nuestro sistema solar de la radiación proveniente del espacio interestelar. Esta misión y sus dos compañeros de viaje orbitarán el Sol cerca del punto de Lagrange 1, a aproximadamente 1,6 millones de kilómetros (un millón de millas) de la Tierra, donde escaneará la heliosfera, analizará la composición de partículas cargadas e investigará cómo esas partículas se mueven a través del sistema solar. Esto proporcionará información sobre cómo el Sol acelera las partículas cargadas, aportando información esencial para comprender el entorno meteorológico espacial en todo el sistema solar. IMAP también monitoreará continuamente el viento solar y la radiación cósmica. La comunidad científica podrá usar estos datos para evaluar capacidades nuevas y mejoradas para herramientas y modelos de predicción de la meteorología espacial, que son vitales para la salud de los humanos que exploran el espacio y la longevidad de sistemas tecnológicos, como satélites y redes eléctricas, que pueden afectar la vida en la Tierra.
      El Observatorio Carruthers de la Geocorona de la agencia es un pequeño satélite concebido para estudiar la exosfera, la parte más externa de la atmósfera de la Tierra. Utilizando cámaras ultravioletas, monitoreará cómo la meteorología espacial del Sol impacta la exosfera, la cual juega un papel crucial en la protección de la Tierra contra eventos de meteorología espacial que pueden afectar satélites, comunicaciones y líneas eléctricas. La exosfera, una nube de hidrógeno neutro que se extiende hasta la Luna y posiblemente más allá, se crea por la descomposición del agua y el metano por la luz ultravioleta del Sol, y su brillo, conocido como la geocorona, solo se ha observado a nivel mundial cuatro veces antes de esta misión.
      La misión SWFO-L1, gestionada por la NOAA y desarrollada con el Centro de Vuelo Espacial Goddard de NASA en Greenbelt, Maryland, y socios comerciales, utilizará un conjunto de instrumentos para proporcionar mediciones en tiempo real del viento solar, junto con un coronógrafo compacto para detectar eyecciones de masa coronal del Sol. El observatorio, que sirve como baliza de alerta temprana para fenómenos meteorológicos espaciales potencialmente destructivos, permitirá pronósticos más rápidos y precisos. Sus datos, disponibles las 24 horas del día, los 7 días de la semana, ayudarán al Centro de Predicción Meteorológica Espacial de la NOAA a proteger infraestructuras vitales, intereses económicos y la seguridad nacional, tanto en la Tierra como en el espacio.
      David McComas, profesor de la Universidad de Princeton, lidera la misión IMAP con un equipo internacional de 25 instituciones asociadas. El Laboratorio de Física Aplicada Johns Hopkins en Laurel, Maryland, construyó la nave espacial y opera la misión. IMAP de la NASA es la quinta misión en el portafolio del programa de Sondas Solares Terrestres de la NASA. La División de Exploradores y Proyectos de Heliofísica en el centro Goddard de la NASA gestiona el programa para la División de Heliofísica de la Dirección de Misiones Científicas de la NASA.
      Para más detalles (en inglés) sobre la misión IMAP y actualizaciones sobre los preparativos de lanzamiento, visite: 
      https://science.nasa.gov/mission/imap/
      -fin-
      Abbey Interrante / María José Viñas
      Sede central de la NASA, Washington
      301-201-0124
      abbey.a.interrante@nasa.gov / maria-jose.vinasgarcia@nasa.gov
      Sarah Frazier
      Centro de Vuelo Espacial Goddard, Greenbelt, Md.
      202-853-7191
      sarah.frazier@nasa.gov
      Leejay Lockhart
      Centro Espacial Kennedy, Fla.
      321-747-8310
      leejay.lockhart@nasa.gov
      John Jones-Bateman
      Servicio de Satélites e Información de la NOAA, Silver Spring, Md.
      202-242-0929
      john.jones-bateman@noaa.gov
      Share
      Details
      Last Updated Aug 21, 2025 LocationNASA Headquarters Related Terms
      NASA en español Carruthers Geocorona Observatory (GLIDE) Goddard Space Flight Center Heliophysics Heliophysics Division IMAP (Interstellar Mapping and Acceleration Probe) Kennedy Space Center Launch Services Program Science & Research Science Mission Directorate Space Weather View the full article
    • By NASA
      NASA's SpaceX 33rd Commercial Resupply Services Launch
    • By NASA
      From top left to right, NASA astronauts Victor Glover, Artemis II pilot; Reid Wiseman, Artemis II commander; CSA (Canadian Space Agency) astronaut Jeremy Hansen, Artemis II mission specialist, and NASA astronaut Christina Koch, Artemis II mission specialist, suit up and walk out of the Neil A. Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida on Aug. 11.Credit: NASA/Kim Shiflett Lee esta nota de prensa en español aquí.
      NASA is opening media accreditation for multi-day events to introduce America’s newest astronaut class and provide briefings for the Artemis II crewed test flight around the Moon. The activities will take place in September at the agency’s Johnson Space Center in Houston.
      After evaluating more than 8,000 applications, NASA will debut its 2025 class of astronaut candidates during a ceremony at 12:30 p.m. EDT on Monday, Sept. 22. Following the ceremony, the candidates will be available for media interviews.
      The astronaut selection event will stream live on NASA+, Netflix, Amazon Prime, NASA’s YouTube channel, and the agency’s X account.
      The selected candidates will undergo nearly two years of training before they graduate as flight-eligible astronauts for agency missions to low Earth orbit, the Moon, and ultimately, Mars.
      Next, NASA will host a series of media briefings on Tuesday, Sept. 23, and Wednesday, Sept. 24, to preview the upcoming Artemis II mission, slated for no later than April 2026. The test flight, a launch of the SLS (Space Launch System) rocket and Orion spacecraft, will send NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, along with CSA (Canadian Space Agency) astronaut Jeremy Hansen, on an approximately 10-day mission around the Moon.
      Artemis II will help confirm the systems and hardware needed for human deep space exploration. This mission is the first crewed flight under NASA’s Artemis campaign and is another step toward new U.S.-crewed missions on the Moon’s surface that will help the agency prepare to send American astronauts to Mars.
      The Artemis II events briefings will stream live on the agency’s YouTube channel and X account. Learn how to watch NASA content through a variety of platforms.
      Following the briefings, NASA will host an Artemis II media day at NASA Johnson on Sept. 24, to showcase mission support facilities, trainers, and hardware for Artemis missions, as well as offer interview opportunities with leaders, flight directors, astronauts, scientists, and engineers.
      Media who wish to participate in person must contact the NASA Johnson newsroom at 281-483-5111 or jsccommu@mail.nasa.gov and indicate which events they plan to attend. Confirmed media will receive additional details about participating in these events. A copy of NASA’s media accreditation policy is available on the agency’s website. Media accreditation deadlines for the astronaut candidate selection and Artemis II events are as follows:
      U.S. media interested in attending in person must RSVP no later than 5 p.m., Wednesday, Sept. 17. International media without U.S. citizenship must RSVP no later than 5 p.m., Wednesday, Sept. 10. Media requesting in-person or virtual interviews with the astronaut candidates, Artemis experts, or the Artemis II crew must submit requests to the NASA Johnson newsroom by Wednesday, Sept. 17. In-person interview requests are subject to the credentialing deadlines noted above.
      Information for the astronaut candidate selection and Artemis II events, including briefing participants, is as follows (all times Eastern):
      Monday, Sept. 22
      12:30 p.m.: 2025 Astronaut Candidate Selection Ceremony
      Tuesday, Sept. 23
      11 a.m.: Artemis II Mission Overview Briefing  
      Lakiesha Hawkins, acting deputy associate administrator, Exploration Systems Development Mission Directorate, NASA Headquarters Charlie Blackwell-Thompson, Artemis launch director, NASA’s Kennedy Space Center in Florida Judd Frieling, lead Artemis II ascent flight director, NASA Johnson Jeff Radigan, lead Artemis II flight director, NASA Johnson Rick Henfling, lead Artemis II entry flight director, NASA Johnson Daniel Florez, test director, Exploration Ground Systems, NASA Kennedy 1 p.m.: Artemis II Science and Technology Briefing
      Matt Ramsey, Artemis II mission manager, NASA Headquarters Howard Hu, Orion Program manager, NASA Johnson Jacob Bleacher, manager, Science, Technology Utilization, and Integration, Exploration Systems Development Mission Directorate, NASA Headquarters Mark Clampin, acting deputy associate administrator, Science Mission Directorate, NASA Headquarters Media who wish to participate by phone must request dial-in information by 5 p.m., Sept. 22, by emailing NASA Johnson’s newsroom.
      Wednesday, Sept. 24
      10 a.m.: Artemis II Crew News Conference
      Reid Wiseman, commander Victor Glover, pilot Christina Koch, mission specialist Jeremy Hansen, mission specialist Media who wish to participate by phone must request dial-in information by 5 p.m., Sept. 23, by emailing NASA Johnson’s newsroom.
      Learn more about how NASA leads human spaceflight efforts at:
      https://www.nasa.gov/humans-in-space
      -end-
      Jimi Russell / Rachel Kraft
      Headquarters, Washington
      202-358-1100
      james.j.russell@nasa.gov / rachel.h.kraft@nasa.gov
      Courtney Beasley / Chelsey Ballarte
      Johnson Space Center, Houston
      281-910-4989
      courtney.m.beasley@nasa.gov / chelsey.n.ballarte@nasa.gov
      Share
      Details
      Last Updated Aug 20, 2025 LocationNASA Headquarters Related Terms
      Artemis Artemis 2 Candidate Astronauts Humans in Space Mars View the full article
    • By NASA
      6 min read
      NASA, IBM’s ‘Hot’ New AI Model Unlocks Secrets of Sun
      This image from June 20, 2013 shows the bright light of a solar flare and an eruption of solar material shooting through the sun’s atmosphere, called a prominence eruption. Shortly thereafter, this same region of the sun sent a coronal mass ejection out into space — a phenomenon which can cause magnetic storms that degrade communication signals and cause unexpected electrical surges in power grids on Earth. NASA’s new heliophysics AI foundation model, Surya, can help predict these storms. NASA/Goddard/SDO NASA is turning up the heat in solar science with the launch of the Surya Heliophysics Foundational Model, an artificial intelligence (AI) model trained on 14 years of observations from NASA’s Solar Dynamics Observatory. 
      Developed by NASA in partnership with IBM and others, Surya uses advances in AI to analyze vast amounts of solar data, helping scientists better understand solar eruptions and predict space weather that threatens satellites, power grids, and communication systems. The model can be used to provide early warnings to satellite operators and helps scientists predict how the Sun’s ultraviolet output affects Earth’s upper atmosphere.
      Preliminary results show Surya is making strides in solar flare forecasting, a long-standing challenge in heliophysics. Surya, with its ability to generate visual predictions of solar flares two hours into the future, marks a major step towards the use of AI for operational space weather prediction. These initial results surpass existing benchmarks by 15%. By providing open access to the model on HuggingFace and the code on GitHub, NASA encourages the science and applications community to test and explore this AI model for innovative solutions that leverage the unique value of continuous, stable, long-duration datasets from the Solar Dynamics Observatory.
      Illustrations of Solar Dynamics Observatory solar imagery used for training Surya: Solar coronal ultraviolet and extreme ultraviolet images from the Atmospheric Imaging Assembly (AIA) and solar surface velocity and magnetic field maps from the Helioseismic and Magnetic Imager (HMI). NASA/SDO The model’s success builds directly on the Solar Dynamics Observatory’s long-term database. Launched in 2010, NASA’s Solar Dynamics Observatory has provided an unbroken, high-resolution record of the Sun for nearly 15 years through capturing images every 12 seconds in multiple wavelengths, plus precise magnetic field measurements. This stable, well-calibrated dataset, spanning an entire solar cycle, is uniquely suited for training AI models like Surya, enabling them to detect subtle patterns in solar behavior that shorter datasets would miss.
      Surya’s strength lies in its foundation model architecture, which learns directly from raw solar data. Unlike traditional AI systems that require extensive labeling, Surya can adapt quickly to new tasks and applications. Applications include tracking active regions, forecasting flare activity, predicting solar wind speed, and integrating data from other observatories including the joint NASA-ESA Solar and Heliospheric Observatory mission and NASA’s Parker Solar Probe.
      “We are advancing data-driven science by embedding NASA’s deep scientific expertise into cutting-edge AI models,” said Kevin Murphy, chief science data officer at NASA Headquarters in Washington. “By developing a foundation model trained on NASA’s heliophysics data, we’re making it easier to analyze the complexities of the Sun’s behavior with unprecedented speed and precision. This model empowers broader understanding of how solar activity impacts critical systems and technologies that we all rely on here on Earth.”
      These images compare the ground-truth data (right) with model output (center) for solar flares, which are the events behind most space weather. Surya’s prediction is very close to what happened in reality (right). These preliminary results suggest that Surya has learned enough solar physics to predict the structure and evolution of a solar flare by looking at its beginning phase. NASA/SDO/ODSI IMPACT AI Team Solar storms pose significant risks to our technology-dependent society. Powerful solar events energize Earth’s ionosphere, resulting in substantial GPS errors or complete signal loss to satellite communications. They also pose risks to power grids, as geomagnetically induced currents from coronal mass ejections can overload transformers and trigger widespread outages.
      In commercial aviation, solar flares can disrupt radio communications and navigation systems while exposing high-altitude flights to increased radiation. The stakes are even higher for human spaceflight. Astronauts bound for the Moon or Mars may need to depend on precise predictions to shelter from intense radiation during solar particle events.
      The Sun’s influence extends to the growing number of low Earth orbit satellites, including those that deliver global high-speed internet. As solar activity intensifies, it heats Earth’s upper atmosphere, increasing drag that slows satellites, pulls them from orbit, and causes premature reentry. Satellite operators often struggle to forecast where and when solar flares might affect these satellites.
      The “ground truth” solar activity is shown on the top row. The bottom row shows solar activity predicted by Surya. NASA/SDO/ODSI IMPACT AI Team “Our society is built on technologies that are highly susceptible to space weather,” said Joseph Westlake, Heliophysics Division director at NASA Headquarters. “Just as we use meteorology to forecast Earth’s weather, space weather forecasts predict the conditions and events in the space environment that can affect Earth and our technologies. Applying AI to data from our heliophysics missions is a vital step in increasing our space weather defense to protect astronauts and spacecraft, power grids and GPS, and many other systems that power our modern world.”
      While Surya is designed to study the Sun, its architecture and methodology are adaptable across scientific domains. From planetary science to Earth observation, the project lays the foundational infrastructure for similar AI efforts in diverse domains.
      Surya is part of a broader NASA push to develop open-access, AI-powered science tools. Both the model and training datasets are freely available online to researchers, educators, and students worldwide, lowering barriers to participation and sparking new discoveries.
      The process for creating Surya. Foundation models enhance the utility of NASA’s Solar Dynamics Observatory datasets and create a base for building new applications. NASA/ODSI IMPACT AI Team Surya’s training was supported in part by the National Artificial Intelligence Research Resource (NAIRR) Pilot, a National Science Foundation (NSF)-led initiative that provides researchers with access to advanced computing, datasets, and AI tools. The NAIRR Pilot brings together federal and industry resources, such as computing power from NVIDIA, to expand access to the infrastructure needed for cutting-edge AI research.
      “This project shows how the NAIRR Pilot is uniting federal and industry AI resources to accelerate scientific breakthroughs,” said Katie Antypas, director of NSF’s Office of Advanced Cyberinfrastructure. “With support from NVIDIA and NSF, we’re not only enabling today’s research, we’re laying the groundwork for a national AI network to drive tomorrow’s discoveries.”
      Surya is part of a larger effort championed and supported by NASA’s Office of the Chief Science Data Officer and Heliophysics Division, the NSF , and partnering universities to advance NASA’s scientific missions through innovative data science and AI models. Surya’s AI architecture was jointly developed by the Interagency Implementation and Advanced Concepts Team (IMPACT) under the Office of Data Science and Informatics  at NASA’s Marshall Space Flight Center in Huntsville, Alabama; IBM; and a collaborative science team.
      The science team, assembled by NASA Headquarters, consisted of experts from the Southwest Research Institute in San Antonio, Texas; the University of Alabama in Huntsville in Huntsville, Alabama; the University of Colorado Boulder in Boulder, Colorado; Georgia State University in Atlanta, Georgia; Princeton University in Princeton, New Jersey; NASA’s SMD’s Heliophysics Division; NASA’s Goddard Space Flight Center in Greenbelt, Maryland; NASA’s Jet Propulsion Laboratory in Pasadena, California; and the SETI Institute in Mountain View, California.
      For a behind-the-scenes dive into Surya’s architecture, industry and academic collaborations, challenges behind developing the model, read the blog post on NASA’s Science Data Portal:
      https://science.data.nasa.gov/features-events/inside-surya-solar-ai-model
      For more information about NASA’s strategy of developing foundation models for science, visit:
      https://science.nasa.gov/artificial-intelligence-science
      Share








      Details
      Last Updated Aug 20, 2025 Related Terms
      Science & Research Artificial Intelligence (AI) Heliophysics Solar Dynamics Observatory (SDO) The Sun The Sun & Solar Physics Explore More
      3 min read Sun at the Center: Teacher Ambassadors Bring Heliophysics to Classrooms Nationwide


      Article


      20 hours ago
      5 min read NASA-funded Compact Radar Drives Big Changes in Airborne and Suborbital Radar Capabilities


      Article


      23 hours ago
      31 min read Summary of the 2025 GEDI Science Team Meeting


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      Artificial Intelligence for Science


      NASA is creating artificial intelligence tools to help researchers use NASA’s science data more effectively.


      Open Science at NASA


      NASA’s commitment to open science fuels groundbreaking research while maximizing transparency, innovation, and collaboration.


      Humans In Space



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...