Members Can Post Anonymously On This Site
🔴 Live Now: 24/7 NASA Live Stream of Earth from Space (Seen From The ISS)
-
Similar Topics
-
By NASA
Dr. Steven “Steve” Platnick took the NASA agency Deferred Resignation Program (DRP). His last work day was August 8, 2025. Steve spent more than three decades at, or associated with, NASA. While he began his civil servant career at the NASA’s Goddard Space Flight Center (GSFC) in 2002, his Goddard association went back to 1993, first as a contractor and then as one of the earliest employees of the Joint Center for Earth Systems Technology (JCET), a cooperative agreement between the University of Maryland, Baltimore County (UMBC) and GSFC’s Earth Science Division. At JCET Steve helped lead the development of the Atmosphere Physics Track curricula. Previously, he had held an NRC post-doctoral fellow at the NASA’s Ames Research Center. Along with his research work on cloud remote sensing from satellite and airborne sensors, Steve served as the Deputy Director for Atmospheres in GSFC’s Earth Sciences Division from January 2015–July 2024.
Dr. Steve Platnick Image credit: NASA During his time at NASA, Steve played an integral role in the sustainability and advancement of NASA’s Earth Observing System platforms and data. In 2008, he took over as the Earth Observing System (EOS) Senior Project Scientist from Michael King. In this role, he led the EOS Project Science Office, which included support for related EOS facility airborne sensors, ground networks, and calibration labs. The office also supported The Earth Observer newsletter, the NASA Earth Observatory, and other outreach and exhibit activities on behalf of NASA Headquarter’s Earth Science Division and Science Mission Directorate (further details below). From January 2003 – February 2010, Steve served as the Aqua Deputy Project Scientist.
Improving Imager Cloud Algorithms
Steve was actively involved in the Moderate Resolution Imaging Spectroradiometer (MODIS) Science Team serving as the Lead for the MODIS Atmosphere Discipline Team (cloud, aerosol and clear sky products) since 2008 and as the NASA Suomi National Polar-orbiting Partnership (Suomi NPP)/JPSS Atmosphere Discipline Lead/co-Lead from 2012–2020. His research team enhanced, maintained, and evaluated MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) cloud algorithms that included Level-2 (L2) Cloud Optical/Microphysical Properties components (MOD06 and MYD06 for MODIS on Terra and Aqua, respectively) and the Atmosphere Discipline Team Level-3 (L3) spatial/temporal products (MOD08, MYD08). The L2 cloud algorithms were developed to retrieve thermodynamic phase, optical thickness, effective particle radius, and derived water path for liquid and ice clouds, among other associated datasets. Working closely with longtime University of Wisconsin-Madison colleagues, the team also developed the CLDPROP continuity products designed to bridge the MODIS and VIIRS cloud data records by addressing differences in the spectral coverage between the two sensors; this product is currently in production for VIIRS on Suomi NPP and NOAA-20, as well as MODIS Aqua. The team also ported their CLDPROP code to Geostationary Operational Environmental Satellites (GOES) R-series Advanced Baseline Imager (ABI) and sister sensors as a research demonstration effort.
Steve’s working group participation included the Global Energy and Water Exchanges (GEWEX) Cloud Assessment Working Group (2008–present); the International Cloud Working Group (ICWG), which is part of the Coordination Group for Meteorological Satellites (CGMS), and its original incarnation, the Cloud Retrieval Evaluation Working (CREW) since 2009; and the NASA Observations for Modeling Intercomparison Studies (obs4MIPs) Working Group (2011–2013). Other notable roles included Deputy Chair of the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) Science Definition Team (2011–2012) and membership in the Advanced Composition Explorer (ACE) Science Definition Team (2009–2011), the ABI Cloud Team (2005–2009), and the Climate Absolute Radiance and Refractivity Observatory (CLARREO) Mission Concept Team (2010-2011).
Steve has participated in numerous major airborne field campaigns over his career. His key ER-2 flight scientist and/or science team management roles included the Monterey Area Ship Track experiment (MAST,1994), First (International Satellite Cloud Climatology Project (ISCCP) Regional Experiment – Arctic Cloud Experiment [FIRE-ACE, 1998], Southern Africa Fire-Atmosphere Research Initiative (SAFARI-2000), Cirrus Regional Study of Tropical Anvils and Cirrus Layers – Florida Area Cirrus Experiment (CRYSTAL-FACE, 2002), and Tropical Composition, Cloud and Climate Coupling (TC4, 2007).
Supporting Earth Science Communications
Through his EOS Project Science Office role, Steve has been supportive of the activities of NASA’s Science Support Office (SSO) and personally participated in many NASA Science exhibits at both national and international scientific conferences, including serving as a Hyperwall presenter numerous times.
For The Earth Observer newsletter publication team in particular, Steve replaced Michael King as Acting EOS Senior Project Scientist in June 2008, taking over the authorship of “The Editor’s Corner” beginning with the May–June 2008 issue [Volume 20, Issue 3]. The Acting label was removed beginning with the January–February 2010 issue [Volume 22, Issue 1]. Steve has been a champion of continuing to retain a historical record of NASA science team meetings to maintain a chronology of advances made by different groups within the NASA Earth Science community. He was supportive of the Executive Editor’s efforts to create a series called “Perspectives on EOS,” which ran from 2008–2011 and told the stories of the early years of the EOS Program from the point of view of those who lived them. He also supported the development of articles to commemorate the 25th and 30th anniversary of The Earth Observer. Later, Steve helped guide the transition of the newsletter from a print publication – the November–December 2022 issue was the last printed issue – to fully online by July 2024, a few months after the publication’s 35th anniversary. The Earth Observer team will miss Steve’s keen insight, historical perspective, and encouragement that he has shown through his leadership for the past 85 issues of print and online publications.
A Career Recognized through Awards and Honors
Throughout his career, Steve has amassed numerous honors, including the Goddard William Nordberg Memorial Award for Earth Science in 2023 and the Verner E. Suomi Award from the American Meteorological Society (AMS) in 2016. He was named an AMS Fellow that same year. He received two NASA Agency Honor Awards – the Exceptional Achievement Medal in 2008 and the Exceptional Service Medal in 2015.
Steve received his bachelor’s degree and master’s degree in electrical engineering from Duke University and the University of California, Berkeley, respectively. He earned a Ph.D. in atmospheric sciences from the University of Arizona.
View the full article
-
By NASA
6 min read
NASA, IBM’s ‘Hot’ New AI Model Unlocks Secrets of Sun
This image from June 20, 2013 shows the bright light of a solar flare and an eruption of solar material shooting through the sun’s atmosphere, called a prominence eruption. Shortly thereafter, this same region of the sun sent a coronal mass ejection out into space — a phenomenon which can cause magnetic storms that degrade communication signals and cause unexpected electrical surges in power grids on Earth. NASA’s new heliophysics AI foundation model, Surya, can help predict these storms. NASA/Goddard/SDO NASA is turning up the heat in solar science with the launch of the Surya Heliophysics Foundational Model, an artificial intelligence (AI) model trained on 14 years of observations from NASA’s Solar Dynamics Observatory.
Developed by NASA in partnership with IBM and others, Surya uses advances in AI to analyze vast amounts of solar data, helping scientists better understand solar eruptions and predict space weather that threatens satellites, power grids, and communication systems. The model can be used to provide early warnings to satellite operators and helps scientists predict how the Sun’s ultraviolet output affects Earth’s upper atmosphere.
Preliminary results show Surya is making strides in solar flare forecasting, a long-standing challenge in heliophysics. Surya, with its ability to generate visual predictions of solar flares two hours into the future, marks a major step towards the use of AI for operational space weather prediction. These initial results surpass existing benchmarks by 15%. By providing open access to the model on HuggingFace and the code on GitHub, NASA encourages the science and applications community to test and explore this AI model for innovative solutions that leverage the unique value of continuous, stable, long-duration datasets from the Solar Dynamics Observatory.
Illustrations of Solar Dynamics Observatory solar imagery used for training Surya: Solar coronal ultraviolet and extreme ultraviolet images from the Atmospheric Imaging Assembly (AIA) and solar surface velocity and magnetic field maps from the Helioseismic and Magnetic Imager (HMI). NASA/SDO The model’s success builds directly on the Solar Dynamics Observatory’s long-term database. Launched in 2010, NASA’s Solar Dynamics Observatory has provided an unbroken, high-resolution record of the Sun for nearly 15 years through capturing images every 12 seconds in multiple wavelengths, plus precise magnetic field measurements. This stable, well-calibrated dataset, spanning an entire solar cycle, is uniquely suited for training AI models like Surya, enabling them to detect subtle patterns in solar behavior that shorter datasets would miss.
Surya’s strength lies in its foundation model architecture, which learns directly from raw solar data. Unlike traditional AI systems that require extensive labeling, Surya can adapt quickly to new tasks and applications. Applications include tracking active regions, forecasting flare activity, predicting solar wind speed, and integrating data from other observatories including the joint NASA-ESA Solar and Heliospheric Observatory mission and NASA’s Parker Solar Probe.
“We are advancing data-driven science by embedding NASA’s deep scientific expertise into cutting-edge AI models,” said Kevin Murphy, chief science data officer at NASA Headquarters in Washington. “By developing a foundation model trained on NASA’s heliophysics data, we’re making it easier to analyze the complexities of the Sun’s behavior with unprecedented speed and precision. This model empowers broader understanding of how solar activity impacts critical systems and technologies that we all rely on here on Earth.”
These images compare the ground-truth data (right) with model output (center) for solar flares, which are the events behind most space weather. Surya’s prediction is very close to what happened in reality (right). These preliminary results suggest that Surya has learned enough solar physics to predict the structure and evolution of a solar flare by looking at its beginning phase. NASA/SDO/ODSI IMPACT AI Team Solar storms pose significant risks to our technology-dependent society. Powerful solar events energize Earth’s ionosphere, resulting in substantial GPS errors or complete signal loss to satellite communications. They also pose risks to power grids, as geomagnetically induced currents from coronal mass ejections can overload transformers and trigger widespread outages.
In commercial aviation, solar flares can disrupt radio communications and navigation systems while exposing high-altitude flights to increased radiation. The stakes are even higher for human spaceflight. Astronauts bound for the Moon or Mars may need to depend on precise predictions to shelter from intense radiation during solar particle events.
The Sun’s influence extends to the growing number of low Earth orbit satellites, including those that deliver global high-speed internet. As solar activity intensifies, it heats Earth’s upper atmosphere, increasing drag that slows satellites, pulls them from orbit, and causes premature reentry. Satellite operators often struggle to forecast where and when solar flares might affect these satellites.
The “ground truth” solar activity is shown on the top row. The bottom row shows solar activity predicted by Surya. NASA/SDO/ODSI IMPACT AI Team “Our society is built on technologies that are highly susceptible to space weather,” said Joseph Westlake, Heliophysics Division director at NASA Headquarters. “Just as we use meteorology to forecast Earth’s weather, space weather forecasts predict the conditions and events in the space environment that can affect Earth and our technologies. Applying AI to data from our heliophysics missions is a vital step in increasing our space weather defense to protect astronauts and spacecraft, power grids and GPS, and many other systems that power our modern world.”
While Surya is designed to study the Sun, its architecture and methodology are adaptable across scientific domains. From planetary science to Earth observation, the project lays the foundational infrastructure for similar AI efforts in diverse domains.
Surya is part of a broader NASA push to develop open-access, AI-powered science tools. Both the model and training datasets are freely available online to researchers, educators, and students worldwide, lowering barriers to participation and sparking new discoveries.
The process for creating Surya. Foundation models enhance the utility of NASA’s Solar Dynamics Observatory datasets and create a base for building new applications. NASA/ODSI IMPACT AI Team Surya’s training was supported in part by the National Artificial Intelligence Research Resource (NAIRR) Pilot, a National Science Foundation (NSF)-led initiative that provides researchers with access to advanced computing, datasets, and AI tools. The NAIRR Pilot brings together federal and industry resources, such as computing power from NVIDIA, to expand access to the infrastructure needed for cutting-edge AI research.
“This project shows how the NAIRR Pilot is uniting federal and industry AI resources to accelerate scientific breakthroughs,” said Katie Antypas, director of NSF’s Office of Advanced Cyberinfrastructure. “With support from NVIDIA and NSF, we’re not only enabling today’s research, we’re laying the groundwork for a national AI network to drive tomorrow’s discoveries.”
Surya is part of a larger effort championed and supported by NASA’s Office of the Chief Science Data Officer and Heliophysics Division, the NSF , and partnering universities to advance NASA’s scientific missions through innovative data science and AI models. Surya’s AI architecture was jointly developed by the Interagency Implementation and Advanced Concepts Team (IMPACT) under the Office of Data Science and Informatics at NASA’s Marshall Space Flight Center in Huntsville, Alabama; IBM; and a collaborative science team.
The science team, assembled by NASA Headquarters, consisted of experts from the Southwest Research Institute in San Antonio, Texas; the University of Alabama in Huntsville in Huntsville, Alabama; the University of Colorado Boulder in Boulder, Colorado; Georgia State University in Atlanta, Georgia; Princeton University in Princeton, New Jersey; NASA’s SMD’s Heliophysics Division; NASA’s Goddard Space Flight Center in Greenbelt, Maryland; NASA’s Jet Propulsion Laboratory in Pasadena, California; and the SETI Institute in Mountain View, California.
For a behind-the-scenes dive into Surya’s architecture, industry and academic collaborations, challenges behind developing the model, read the blog post on NASA’s Science Data Portal:
https://science.data.nasa.gov/features-events/inside-surya-solar-ai-model
For more information about NASA’s strategy of developing foundation models for science, visit:
https://science.nasa.gov/artificial-intelligence-science
Share
Details
Last Updated Aug 20, 2025 Related Terms
Science & Research Artificial Intelligence (AI) Heliophysics Solar Dynamics Observatory (SDO) The Sun The Sun & Solar Physics Explore More
3 min read Sun at the Center: Teacher Ambassadors Bring Heliophysics to Classrooms Nationwide
Article
20 hours ago
5 min read NASA-funded Compact Radar Drives Big Changes in Airborne and Suborbital Radar Capabilities
Article
23 hours ago
31 min read Summary of the 2025 GEDI Science Team Meeting
Article
2 days ago
Keep Exploring Discover More Topics From NASA
Artificial Intelligence for Science
NASA is creating artificial intelligence tools to help researchers use NASA’s science data more effectively.
Open Science at NASA
NASA’s commitment to open science fuels groundbreaking research while maximizing transparency, innovation, and collaboration.
Humans In Space
Solar System
View the full article
-
By European Space Agency
Southern Europe is once again in the grip of extreme summer heat. Soaring temperatures and bone-dry land have fuelled widespread wildfires, with the Iberian Peninsula among the regions hardest hit. Flames continue to sweep across parched landscapes, as these images show.
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s Psyche captured images of Earth and our Moon from about 180 million miles (290 kilometers) away in July 2025, as it calibrated its imager instrument. When choosing targets for the imager testing, scientists look for bodies that shine with reflected sunlight, just as the asteroid Psyche does.NASA/JPL-Caltech/ASU Headed for a metal-rich asteroid of the same name, the Psyche spacecraft successfully calibrated its cameras by looking homeward.
On schedule for its 2029 arrival at the asteroid Psyche, NASA’s Psyche spacecraft recently looked back toward home and captured images of Earth and our Moon from about 180 million miles (290 million kilometers) away. The images were obtained during one of the mission team’s periodic checkouts of the spacecraft’s science instruments.
On July 20 and July 23, the spacecraft’s twin cameras captured multiple long-exposure (up to 10-second) pictures of the two bodies, which appear as dots sparkling with reflected sunlight amid a starfield in the constellation Aries.
Learn more about the multispectral imager aboard Psyche that will use a pair of identical cameras with filters and telescopic lenses to photograph the surface of the asteroid in different wavelengths of light. NASA/JPL-Caltech/ASU The Psyche multispectral imager instrument comprises a pair of identical cameras equipped with filters and telescopic lenses to photograph the asteroid Psyche’s surface in different wavelengths of light. The color and shape of a planetary body’s spectrum can reveal details about what it’s made of. The Moon and the giant asteroid Vesta, for example, have similar kinds of “bumps and wiggles” in their spectra that scientists could potentially also detect at Psyche. Members of the mission’s science team are interested in Psyche because it will help them better understand the formation of rocky planets with metallic cores, including Earth.
When choosing targets for the imager testing and calibration, scientists look for bodies that shine with reflected sunlight, just as the asteroid Psyche does. They also look at objects that have a spectrum they’re familiar with, so they can compare previous telescopic or spacecraft data from those objects with what Psyche’s instruments observe. Earlier this year, Psyche turned its lenses toward Jupiter and Mars for calibration — each has a spectrum more reddish than the bluer tones of Earth. That checkout also proved a success.
The Psyche spacecraft is taking a spiral path around the solar system in order to get a boost from a Mars gravity assist in 2026. It will arrive at the asteroid Psyche in 2029. NASA/JPL-Caltech To determine whether the imager’s performance is changing, scientists also compare data from the different tests. That way, when the spacecraft slips into orbit around Psyche, scientists can be sure that the instrument behaves as expected.
“After this, we may look at Saturn or Vesta to help us continue to test the imagers,” said Jim Bell, the Psyche imager instrument lead at Arizona State University in Tempe. “We’re sort of collecting solar system ‘trading cards’ from these different bodies and running them through our calibration pipeline to make sure we’re getting the right answers.”
Strong and Sturdy
The imager wasn’t the only instrument that got a successful checkout in late July: The mission team also put the spacecraft’s magnetometer and the gamma-ray and neutron spectrometer through a gamut of tests — something they do every six months.
“We are up and running, and everything is working well,” said Bob Mase, the mission’s project manager at NASA’s Jet Propulsion Laboratory in Southern California. “We’re on target to fly by Mars in May 2026, and we are accomplishing all of our planned activities for cruise.”
That flyby is the spacecraft’s next big milestone, when it will use the Red Planet’s gravity as a slingshot to help the spacecraft get to the asteroid Psyche. That will mark Psyche’s first of two planned loops around the solar system and 1 billion miles (1.6 billion kilometers) since launching from NASA’s Kennedy Space Center in October 2023.
More About Psyche
The Psyche mission is led by ASU. Lindy Elkins-Tanton of the University of California, Berkeley is the principal investigator.A division of Caltech in Pasadena, JPL is responsible for the mission’s overall management, system engineering, integration and test, and mission operations. Maxar Technologies in Palo Alto, California, provided the high-power solar electric propulsion spacecraft chassis. ASU leads the operations of the imager instrument, working in collaboration with Malin Space Science Systems in San Diego on the design, fabrication, and testing of the cameras.
Psyche is the 14th mission selected as part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. NASA’s Launch Services Program, based at Kennedy, managed the launch service.
For more information about NASA’s Psyche mission go to:
http://www.science.nasa.gov/mission/psyche
Check out the Psyche spacecraft’s trajectory in 3D News Media Contacts
Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif.
818-287-4115
gretchen.p.mccartney@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2025-106
Share
Details
Last Updated Aug 19, 2025 Related Terms
Psyche Mission Asteroids Jet Propulsion Laboratory The Solar System Explore More
3 min read Summer Triangle Corner: Altair
Altair is the last stop on our trip around the Summer Triangle! The last star…
Article 4 days ago 5 min read NASA’s Apollo Samples, LRO Help Scientists Forecast Moonquakes
Moonquakes pose little risk to astronauts during a mission lasting just a few days. But…
Article 5 days ago 4 min read US-French SWOT Satellite Measures Tsunami After Massive Quake
Article 2 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
This National Aviation Day graphic shows Orville Wright surrounded by the faces of some of NASA’s aeronautical innovators.NASA / Maria Werries The first “A” in NASA stands for Aeronautics – so naturally that means today, Aug. 19, National Aviation Day, is one of our favorite days all year!
National Aviation Day was first proclaimed in 1939 by President Franklin Roosevelt to celebrate the birthday of aviation pioneer Orville Wright, who, with his brother Wilbur, in 1903, were the first humans to achieve powered flight.
Each year since the President first marked the occasion, sky-faring Americans have come together on this date in an annual celebration of flight – a time to revel in spreading our wings and slipping the surly bonds of Earth.
All of us at NASA share in that celebration. We love everything about flight, whether it’s into space or within Earth’s atmosphere.
Our aeronautical innovators are dedicated to improving the design of airplanes to carry on pioneering new technologies in high-speed flight, airframes and propulsion methods, aerospace engineering modelling, and automating airspace and safety management.
Our heritage in aviation research goes back more than 100 years. We’ve helped air travel become a safe, efficient, reliable form of transportation. If you’re heading to an airport, keep an eye out for these NASA-developed aviation technologies you might see on your flight:
WINGLETSNASA studies led to development of vertical extensions that can be attached to wing tips in order to reduce aerodynamic drag without having to increase wingspan. Winglets help increase an airplane’s range, decrease fuel use, and today can be seen on airplanes everywhere.NASA CHEVRON NOZZLESWorking with its industry partners, NASA researchers determined an effective way to reduce noise levels on the ground and in the passenger cabin was to add saw tooth-shaped cut outs, or chevrons, to structures such as exhaust nozzles and cowlings of jet engines.NASA / The Boeing Company GLASS COCKPITS NASA created and tested the concept of replacing dial and gauge instruments with flat panel digital displays. The displays present information more efficiently and provide the flight crew with a more easily understood picture of the aircraft’s health and position.NASA Langley / Sean Smith How Will You Celebrate?
How else can you celebrate National Aviation Day? Here are seven ideas:
Visit your local science museum or NASA visitor center
Explore your local science center for exhibits about aviation and how an airplane flies. And if you live within a short drive from Norfolk, Virginia; Cleveland, or San Francisco, you might consider checking out the visitor centers associated with NASA’s Langley Research Center, Glenn Research Center, or Ames Research Center, respectively. These major NASA field centers play host to the majority of NASA’s aeronautics research. (NASA’s Armstrong Flight Research Center, the fourth of NASA’s aeronautics centers, is located within the restricted area of Edwards Air Force Base in California so they do not have a public visitor’s center.)
Watch an aviation-themed movie
There’s no shortage of classic aviation-themed movies available to watch in any format (streaming, DVD, cinema, library rentals, etc.), and with any snacks (popcorn, nachos, gummies, etc.). We dare not attempt a comprehensive list, but a good place to start is our documentary “X-59: NASA’s “Quesst” for Quiet Supersonic Flight” available to stream on NASA+.
Build an airplane
Why not? It doesn’t have to be big enough to actually fly in – plastic model kits of the world’s most historic aircraft can be just as rewarding and just as educational, especially for kids who might be thinking about a career as an engineer or technician. In fact, many astronauts will tell you their love of aviation and space began with putting models together as a child. Another idea: Grab some LEGO bricks and build the airplane of your dreams. Or make it easy on yourself, fold a paper airplane and shoot it across the room.
Take an introductory flight lesson
Pilots will tell you there is a wonderful sense of freedom in flying, not to mention the incredible views and the personal sense of accomplishment. At the same time, being a pilot is not for everyone, but you won’t know unless you try! Many general aviation airports in the nation have a flight school that may offer an introductory flight lesson at a discounted price. And if you want a taste of flight without leaving the ground, computer desktop flight simulators such as Microsoft Flight Simulator or X-Plane are popular choices and can get you into the virtual sky in short order.
Visit your local library or download a NASA e-book
Aviation-themed books, whether fact or fiction, are all over the shelves of your local library – literally. That’s because there’s no single Dewey Decimal number for aviation. A book about aviation history will be in a different section of the library than a book about how to design an airplane. And creative nonfiction books such as the Mark Vanhoenacker’s “Skyfaring,” or autobiographies such as Eileen Collins’ “Through the Glass Ceiling to the Stars,” are off on yet another shelf. Don’t hesitate to ask your librarian for help. And when you get back from the library, or while still there, jump online and check out the NASA e-books you can download and own for free.
Have a plane spotting picnic near an airport
At Washington’s National Airport, it’s Gravelly Point. In Tampa, Florida it’s International Mall. If you live near a major international airport, chances are you know the best place where the locals can go to watch aircraft take off and land up close. Be sure to take heed of any security restrictions about where you can and can’t go. But once you have your spot picked out, then load up your picnic basket and camp out for an evening of plane spotting. See how many different types of airplanes you can count or identify.
Follow what we’re doing to transform aviation
NASA’s aeronautical innovators are working to transform air transportation to meet the future needs of the global aviation community. Sounds like a big job, right? It is and there are many ways in which NASA is doing this. Improving an airplane’s aerodynamics, making airplanes more efficient and quieter, working with the Federal Aviation Administration to improve air traffic control – the list could go on for many thousands of more words. Bookmark our NASA Aeronautics topic page and follow us on social media @NASAaero.
So remember this National Aviation Day, NASA is with you when you fly!
About the Author
John Gould
Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
4 min read NASA Tests Research Aircraft to Improve Air Taxi Flight Controls
Article 5 days ago 3 min read NASA Uses Wind Tunnel to Test Advanced Air Mobility Aircraft Wing
Article 2 weeks ago 3 min read NASA Drop Test Supports Safer Air Taxi Design and Certification
Article 3 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Artemis
Aeronautics STEM
Explore NASA’s History
Share
Details
Last Updated Aug 19, 2025 Related Terms
Aeronautics Aeronautics Research Mission Directorate View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.