Jump to content

Station Nation: Meet Tess Caswell, Extravehicular Activity Flight Controller and Lead Capsule Communicator 


Recommended Posts

  • Publishers
Posted

Tess Caswell supports the International Space Station from NASA’s Johnson Space Center in Houston as a capsule communicator, or capcom, as well as through the Extravehicular Activity Office. She is currently on rotation as the Artemis lead capcom, helping to develop training and processes for the Artemis campaign by leveraging her experience supporting the space station.  

She helps ensure that astronauts aboard the spacecraft receive the right information at the right time. This role involves a range of activities, from learning the language of the spacecraft and its onboard operations to participating in simulations to relay critical information to the crew, especially during dynamic operations or when things go wrong.  

Read on to learn more about Tess! 

Two women sit at their desk in the Mission Control Center
Tess Caswell serves as lead capsule communicator, or capcom, in the Mission Control Center in Houston for the arrival of NASA’s SpaceX Crew-10 to the International Space Station.
NASA/Robert Markowitz

Where are you from? 

Soldotna, Alaska. 

How would you describe your job to family or friends that may not be familiar with NASA? 

Capcoms are the people who speak to the astronauts on behalf of Mission Control, and I am the lead for the team of capcoms who will support missions to the Moon as part of NASA’s Artemis campaign.  

What advice would you give to young individuals aspiring to work in the space industry or at NASA? 

Remember that space travel is more than just engineers and scientists. It takes all kinds of people to support astronauts in space, including medicine, food science, communications, photography – you name it!

Tess Caswell

Tess Caswell

Extravehicular Activity Flight Controller and Lead Capsule Communicator 

I like to encourage young people to think about what part of space travel inspires them. We live in an era where there are many companies leveraging space for different purposes, including tourism, settlement, profit, and exploration. It’s important to think about what aspect of space travel interests you – or use things like internships to figure it out! 

If you’re excited about space but don’t want to be an engineer, there are still jobs for you. 

How long have you been working for NASA? 

Eight years, plus a few internships. 

What was your path to NASA? 

Internships and student projects were my path to NASA. As an undergraduate, I worked in a student rocket lab, which gave me firsthand experience building and testing hardware. During the summers, I participated in internships to explore various careers and NASA centers. My final internship led directly to my first job after college as an Environmental and Thermal Operating Systems (ETHOS) flight controller in mission control for the space station. 

I left NASA for a while to pursue an advanced degree in planetary geology and spent two years working at Blue Origin as the lead flight controller for the New Shepard capsule. Ultimately, though, I am motivated by exploration and chose to return to NASA where that is our focus. I landed in the Extravehicular Activity Office (EVA) within the Flight Operations Directorate after returning from Blue Origin. 

A person wears a spacesuit during underwater training.
Tess Caswell suits up in the Extravehicular Mobility Unit at the Neutral Buoyancy Laboratory at NASA’s Sonny Carter Training Facility in Houston during training to become an EVA instructor.
NASA/Richie Hindman

Is there a space figure you’ve looked up to or someone that inspires you?  

It’s hard to name a specific figure who inspires me. Instead, it’s the caliber of people overall who work in flight operations at Johnson Space Center. Not just the astronauts, but the folks in mission control, in the backrooms supporting the control center, and on the training teams for astronauts and flight controllers. Every single person demonstrates excellence every day. It inspires me to bring my best self to the table in each and every project. 

What is your favorite NASA memory or the most meaningful project you’ve worked on during your time with NASA? 

That is a hard one!  

My current favorite is probably the day I certified as a capcom for the space station. The first time talking to the crew is both nerve-wracking and exciting. You know the entire space station community stops and listens when you are speaking, but it’s incredibly cool to be privileged with speaking to the crew. So, your first few days are a little scary, but awesome. After I’d been declared certified, the crew called down on Space –to Ground to congratulate me. It was a very special moment. I saved a recording of it! 

tessjpg.jpg?w=1536
Tess Caswell learns to fly the International Space Station Remote Manipulator System, or Canadarm2, in Canada as part of capcom training.
Tess Caswell

What do you love sharing about station? 

The international collaboration required to design, build, and operate the International Space Station is a constant source of inspiration for me.

Tess Caswell

Tess Caswell

Extravehicular Activity Flight Controller and Lead Capsule Communicator 

When I give folks tours of mission control, I like to point out the photo of the U.S.-built Unity node and the Russian-built Zarya module mated in the shuttle cargo bay. The idea that those two modules were designed and built in different countries, launched in two different vehicles, and connected for the first time in low Earth orbit reminds me of what we can all do when we work together across geopolitical boundaries. The space station brings people together in a common mission that benefits all of us. 

If you could have dinner with any astronaut, past or present, who would it be? 

Sally Ride, definitely. 

Do you have a favorite space-related memory or moment that stands out to you? 

If I had to choose one, I’d say it was the day a person from NASA visited my elementary school in 1995. I remember being completely captivated by his presentation and dying to ask questions when he came by my classroom later. It’s a favorite memory because it poured fuel on the spark of my early childhood interest in space exploration. It wasn’t the thing that initially piqued my interest, but that visit made the dream feel attainable and set me on the course that has me at NASA today. 

What are some of the key projects you have worked on during your time at NASA? What have been your favorite? 

I’ve worked in mission control for the space station as an ETHOS flight controller and, later, as a capcom. I’ve also certified as an EVA task backroom controller and scripted three spacewalks that were performed on the space station. While working in EVA, I also helped design the products and processes that will be used to design moonwalks for Artemis astronauts and how flight control operations will work during dynamic, science-driven spacewalks.  

 Developing an EVA is a huge integration effort, and you get to work with a broad range of perspectives to build a solid plan. Then, the spacewalks themselves were both challenging and rewarding. They didn’t go exactly to plan, but we kept the crew safe and accomplished our primary objectives! 

I’m fortunate to have had so many cool experiences while working at NASA, and I know there will be many more. 

jsc2021e020100.jpg?w=2048
Tess Caswell, right, and geoscientist Dr. Kelsey Young, left, conduct night operations in NASA’s Johnson Space Center rock yard, testing EVA techniques to prepare for future lunar missions.
NASA/Norah Moran

What are your hobbies/things you enjoy doing outside of work? 

I like to stay active, including trail running, taekwondo, backpacking, and cross-country skiing (which is a bit hard to train for in Houston). I spend as much time as I can flying my Piper J-3 Cub, trying to make myself a better pilot each time I fly. Finally, I read and write fiction to let my imagination wander. 

Day launch or night launch? 

Night launch! 

Favorite space movie? 

Apollo 13, hands down! 

NASA Worm or Meatball logo? 

Worm – elegant and cool! 

NASA spelled out in red letters.

Every day, we are conducting exciting research aboard our orbiting laboratory that will help us explore farther into space and bring benefits back to people on Earth. You can keep up with the latest news, videos, and pictures about space station science on the Station Research & Technology news page. It is a curated hub of space station research digital media from Johnson and other centers and space agencies.  

Sign up for our weekly email newsletter to get the updates delivered directly to you.  

Follow updates on social media at @ISS_Research on X, and on the space station accounts on Facebook and Instagram.  

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The SpaceX Falcon 9 rocket carrying the Dragon spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Monday, April 21, 2025, on the company’s 32nd commercial resupply services mission for the agency to the International Space Station. Liftoff was at 4:15 a.m. EDT. SpaceX NASA and SpaceX are targeting 2:45 a.m. EDT, Sunday, Aug. 24, for the next launch to deliver science investigations, supplies, and equipment to the International Space Station. This is the 33rd SpaceX commercial resupply services mission to the orbital laboratory for NASA.
      Filled with more than 5,000 pounds of supplies, a SpaceX Dragon spacecraft on a Falcon 9 rocket will lift off from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. Dragon will dock autonomously about 7:30 a.m. on Monday, Aug. 25, to the forward port of the space station’s Harmony module.
      Watch agency launch and arrival coverage on NASA+, Netflix, Amazon Prime, and more. Learn how to watch NASA content through a variety of platforms, including social media.
      In addition to food, supplies, and equipment for the crew, Dragon will deliver several experiments, including bone-forming stem cells for studying bone loss prevention and materials to 3D print medical implants that could advance treatments for nerve damage on Earth. Dragon also will deliver bioprinted liver tissue to study blood vessel development in microgravity and supplies to 3D print metal cubes in space. Research conducted aboard the space station advances future space exploration – including Artemis missions to the Moon and astronaut missions Mars – and provides multiple benefits to humanity.
      In addition, Dragon will perform a reboost demonstration of station to maintain its current altitude. The hardware, located in the trunk of Dragon, contains an independent propellant system separate from the spacecraft to fuel two Draco engines using existing hardware and propellant system design. The boost kit will demonstrate the capability to help sustain the orbiting lab’s altitude starting in September with a series of burns planned periodically throughout the fall of 2025. During NASA’s SpaceX 31st commercial resupply services mission, the Dragon spacecraft performed its first demonstration of these capabilities on Nov. 8, 2024.
      The Dragon spacecraft is scheduled to remain at the space station until December when it will depart and return to Earth with research and cargo, splashing down in the Pacific Ocean off the coast of California.
      NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Tuesday, Aug. 19:
      1 p.m. – International Space Station National Laboratory Science Webinar with the following participants:
      Heidi Parris, associate program scientist, NASA’s International Space Station Program Research Office Michael Roberts, chief scientific officer, International Space Station National Laboratory James Yoo, assistant director, Wake Forest Institute of Regenerative Medicine Tony James, chief architect for science and space, Red Hat Abba Zubair, medical director and scientist, Mayo Clinic Arun Sharma, director, Center for Space Medicine Research, Cedars-Sinai Medical Center Media who wish to participate must register for Zoom access no later than one hour before the start of the webinar.
      The conference will stream live on the International Space Station National Lab’s website.
      Friday, Aug. 22:
      11:30 a.m. – Prelaunch media teleconference with the following participants:
      Bill Spetch, operations integration manager, NASA’s International Space Station Program Heidi Parris, associate program scientist, NASA’s International Space Station Program Research Office Sarah Walker, director, Dragon Mission Management, SpaceX Media who wish to participate by phone must request dial-in information by 10 a.m. Aug. 22, by emailing NASA Kennedy Space Center’s newsroom at: ksc-newsroom@mail.nasa.gov.
      Audio of the media teleconference will stream live on the agency’s YouTube channel.
      Sunday, Aug. 24
      2:25 a.m. – Launch coverage begins on NASA+, Netflix, and Amazon Prime.
      2:45 a.m. – Launch
      Monday, Aug. 25:
      6 a.m. – Arrival coverage begins on NASA+, Netflix, and Amazon Prime.
      7:30 a.m. – Docking
      NASA website launch coverage
      Launch day coverage of the mission will be available on the NASA website. Coverage will include live streaming and blog updates beginning no earlier than 2:25 a.m. Sunday, Aug. 24, as the countdown milestones occur. On-demand streaming video on NASA+ and photos of the launch will be available shortly after liftoff. For questions about countdown coverage, contact the NASA Kennedy newsroom at 321-867-2468. Follow countdown coverage on our International Space Station blog for updates.
      Attend Launch Virtually
      Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch.
      Watch, Engage on Social Media Let people know you’re watching the mission on X, Facebook, and Instagram by following and tagging these accounts:
      X: @NASA, @NASAKennedy, @NASASocial, @Space_Station, @ISS_CASIS
      Facebook: NASA, NASAKennedy, ISS, ISS National Lab
      Instagram: @NASA, @NASAKennedy, @ISS, @ISSNationalLab
      Coverage en Espanol
      Did you know NASA has a Spanish section called NASA en Espanol? Check out NASA en Espanol on X, Instagram, Facebook, and YouTube for additional mission coverage.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.
      Learn more about the mission at:
      https://www.nasa.gov/mission/nasas-spacex-crs-33/
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Steven Siceloff
      Kennedy Space Center, Fla.
      321-876-2468
      steven.p.siceloff@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewskI@nasa.gov
      Share
      Details
      Last Updated Aug 18, 2025 LocationNASA Headquarters Related Terms
      SpaceX Commercial Resupply Commercial Resupply International Space Station (ISS) Johnson Space Center Kennedy Space Center NASA Headquarters View the full article
    • By NASA
      5 Min Read NASA, Army National Guard Partner on Flight Training for Moon Landing
      By Corinne Beckinger
      When Artemis astronauts land on the Moon’s South Pole in a commercial human landing system, they will encounter a landscape pockmarked with deep craters, sloped connecting ridges, and harsh lighting conditions. The Moon’s lack of contrast, combined with its rolling terrain, will also pose a challenge, making it difficult for astronauts to overcome visual illusions on the lunar surface.
      NASA astronaut Bob Hines (left) and Colorado Army National Guard HAATS instructor Ethan Jacobs practice landing procedures in the Rocky Mountains of Colorado in April 2025. Depending on the season, the snowy or dusty conditions can cause visual obstruction. Lunar dust can cause similar visual impairment during future crewed missions. In the mountains of northern Colorado, NASA and the U.S. Army National Guard are using military helicopters to develop a foundational lunar landersimulated flight training course to help astronauts practice flight and landing procedures for the Moon. 
      For decades, military helicopter pilots have trained at the HAATS (High-Altitude Army National Guard Aviation Training Site) in Gypsum, Colorado. In 2021, NASA and the Colorado Army National Guard began working together to develop a course specifically for the next generation of lunar explorers.
      That NASA-specific course is scheduled to be finalized in August 2025, marking an important milestone for Artemis crewed landings training efforts.
      “NASA is using a three-pronged approach with motion-based simulation, in-flight lunar landing analog training, and in-flight lunar simulation to build out its foundational training for Artemis Moon landings,” said NASA astronaut Doug Wheelock, who helped coordinate the training program. “Helicopters at or above 10,000 feet are not really efficient in the thin air, forcing us into operating with very thin power margins similar to the Apollo astronauts having to manage energy and momentum to land safely. The operations along with the terrain at the HAATS course in Colorado’s Rocky Mountains provide a valuable, real-world opportunity for Artemis astronauts to practice flying and landing in conditions similar to maneuvering a lander in the lunar environment.”
      NASA astronaut Raja Chari participates in the HAATS course in April 2025. Since 2021, 22 NASA astronauts and one ESA (European Space Agency) astronaut have participated and evaluated the course based on functionality and Artemis mission needs. NASA/Laura Kiker NASA astronaut Raja Chari participates in the HAATS course in April 2025. Since 2021, 22 NASA astronauts and one ESA (European Space Agency) astronaut have participated and evaluated the course based on functionality and Artemis mission needs. NASA/Corinne Beckinger NASA’s human landing systems that will safely transport astronauts to and from the Moon’s surface will be provided by SpaceX and Blue Origin.
      NASA’s Artemis III mission will build on earlier test flights and add new capabilities, including SpaceX’s Starship Human Landing System and advanced spacesuits, to send the first astronauts to explore the lunar South Pole and prepare humanity to go to Mars.
      While each industry provider is responsible for training Artemis astronauts on its specific lander, NASA is establishing foundational training to help prepare astronauts for crewed flights.
      Flight training opportunities like this are vital to mission success and crew safety.”
      Doug Wheelock
      NASA Astronaut
      “Over the last few years, NASA and the Army National Guard have worked closely to evaluate training procedures and landing zone areas, incorporating accounts from Apollo astronauts,” Wheelock said. “During training flights at HAATS, astronauts can experience the visual illusions, cross-cockpit communication, and degraded visibility they may experience navigating to their landing zone near the lunar south pole. Flight training opportunities like this are vital to mission success and crew safety.”
      Paired with trained instructors from the Army National Guard, astronauts fly to mountaintops and valleys in a range of aircraft, including LUH-72 Lakotas, CH-47 Chinooks, and UH-60 Black Hawks.
      While one astronaut pilots the aircraft, an astronaut in the back charts the landing area, marking key landmarks, identifying potential hazards, and helping to track the flight path. Throughout the week-long course, the landing zones and situations become more challenging, allowing astronauts to experience team dynamics and practice communication skills they will need to land on the Moon.
      “Our full-time Colorado Army National Guard pilots have thousands of flight hours navigating the Rocky Mountains at altitudes ranging from 6,500 to 14,200 feet, and we are reaching new heights by providing realistic and relevant training with NASA for Artemis,” said first sergeant Joshua Smith of the HAATS program. “Our Colorado Army National Guard pilots may not fly around the Moon, but we wear our motto, de monitbus ad astra — from the mountains to the stars — with pride.”
      Fast Facts
      On the Moon’s South Pole, the Sun is never more than 1.5 degrees above or below the horizon. With the Sun at such a low angle and with only a thin exosphere, shadows are stark, and astronauts may find it difficult to determine distances and heights.

      The Moon’s atmosphere is extremely thin, with few particles, and is called an exosphere. The Moon’s exosphere is thin enough to glow in sunlight, which has been observed by spacecraft and some of the Apollo astronauts. The Moon’s surface is challenging to land on. There are inactive volcanoes, bounders, large basins, craters, and cracks in the Moon’s crust, caused by the Earth’s gravity tugging on the Moon. Moon dust can also obscure the view from the windows of a commercial human landing system, and affect sensors that relay important information, such as altitude and velocity, to astronauts. Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all. 
      For more information about Artemis visit:
      https://www.nasa.gov/artemis
      Share
      Details
      Last Updated Aug 18, 2025 EditorBeth RidgewayContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Human Lander Challenge General Human Landing System Program Marshall Space Flight Center Explore More
      3 min read Human Rating and NASA-STD-3001
      Article 3 days ago 3 min read NASA Seeks Proposals for 2026 Human Exploration Rover Challenge 
      Article 3 days ago 4 min read NASA IXPE’s ‘Heartbeat Black Hole’ Measurements Challenge Current Theories
      Article 6 days ago Keep Exploring Discover More Topics From NASA
      Artemis
      Human Landing System
      Earth’s Moon
      The Moon makes Earth more livable, sets the rhythm of ocean tides, and keeps a record of our solar system’s…
      Artemis III
      View the full article
    • By NASA
      Northrop Grumman’s Cygnus spacecraft, atop a SpaceX Falcon 9 rocket, soars from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida on Aug. 4, 2024, for Northrop Grumman’s 21st Commercial Resupply Services mission for NASA.Credit: SpaceX Media accreditation is open for the next launch to deliver NASA science investigations, supplies, and equipment to the International Space Station. A Northrop Grumman Cygnus spacecraft will launch to the orbital laboratory on a SpaceX Falcon 9 rocket for NASA.
      The mission is known as NASA’s Northrop Grumman Commercial Resupply Services 23, or Northrop Grumman CRS-23. Liftoff is targeted for mid-September from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
      Following launch, astronauts aboard the space station will use the Canadarm2 to grapple Cygnus, and the spacecraft will be installed robotically to the Unity module’s Earth-facing port for cargo unloading. The spacecraft will remain at the space station for more than two months.
      Credentialing to cover prelaunch and launch activities is open to U.S. media. The application deadline for U.S. citizens is 11:59 p.m. EDT, Wednesday, Aug. 27. All accreditation requests must be submitted online at:
      https://media.ksc.nasa.gov
      Credentialed media will receive a confirmation email upon approval. NASA’s media accreditation policy is available online. For questions about accreditation, or to request special logistical support, email: ksc-media-accreditat@mail.nasa.gov. For other questions, please contact NASA’s Kennedy Space Center newsroom at: 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitor entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.
      This is the 23rd spacecraft built to deliver goods to the International Space Station. In March, NASA and Northrop Grumman moved up the company’s Commercial Resupply Services-23 mission to September following damage to the Cygnus Pressurized Cargo Module during shipping for the company’s Commercial Resupply Services-22 flight.
      Each resupply mission to the station delivers scientific investigations in the areas of biology and biotechnology, Earth and space science, physical sciences, and technology development and demonstrations. Cargo resupply from U.S. companies ensures a national capability to deliver scientific research to the space station, increasing NASA’s ability to conduct new investigations aboard humanity’s laboratory in space.
      In addition to food, supplies, and equipment for the crew, Cygnus will deliver research, including materials to produce semiconductor crystals in space and equipment to develop improvements for cryogenic fuel tanks. Cygnus also will deliver a specialized UV light system to prevent biofilm growth and supplies to produce pharmaceutical crystals that could treat cancer and other diseases.
      The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For almost 25 years, humans have continuously lived and worked aboard the International Space Station, advancing scientific knowledge and demonstrating new technologies that enable us to prepare for human exploration of the Moon and Mars.
      Learn more about NASA’s commercial resupply missions at:
      https://www.nasa.gov/station
      -end-
      Josh Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Steven Siceloff
      Kennedy Space Center, Fla.
      321-876-2468
      steven.p.siceloff@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Aug 18, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Commercial Resupply International Space Station (ISS) ISS Research Northrop Grumman Commercial Resupply View the full article
    • By NASA
      On January 7, 2021, NASA astronaut Kate Rubins serviced samples for Bacterial Adhesion and Corrosion. This investigation looked at how spaceflight affects the formation of microbial biofilms and tested a silver-based disinfectant.NASA This November marks a quarter century of continuous human presence aboard the International Space Station, which has served as a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including human missions to the Moon and Mars. To kick off the orbiting laboratory’s silver 25th anniversary countdown, here are a few silver-themed science investigations that have advanced research and space exploration.
      Antimicrobial properties
      Silver has been used for centuries to fight infection, and researchers use its unique properties to mitigate microbial growth aboard the space station. Over time, microbes form biofilms, sticky communities that can grow on surfaces and cause infection. In space, biofilms can become resistant to traditional cleaning products and could infect water treatment systems, damage equipment, and pose a health risk to astronauts. The Bacterial Adhesion and Corrosion investigation studied the bacterial genes that contribute to the formation of biofilms and tested whether a silver-based disinfectant could limit their growth.
      Another experiment focused on the production of silver nanoparticles aboard the space station. Silver nanoparticles have a bigger surface-to-volume ratio, allowing silver ions to come in contact with more microbes, making it a more effective antimicrobial tool to help protect crew from potential infection on future space missions. It also evaluated whether silver nanoparticles produced in space are more stable and uniform in size and shape, characteristics that could further enhance their effectiveness.
      Wearable tech
      Silver is a high-conductivity precious metal that is very malleable, making it a viable option for smart garments. NASA astronauts aboard the orbiting laboratory tested a wearable monitoring vest with silver-coated sensors to record heart rates, cardiac mechanics, and breathing patterns while they slept. This smart garment is lightweight and more comfortable, so it does not disturb sleep quality. The data collected provided valuable insight into improving astronauts’ sleep in space.
      Silver crystals
      In microgravity, there is no up or down, and weightlessness does not allow particles to settle, which impacts physical and chemical processes. Researchers use this unique microgravity environment to grow larger and more uniform crystals unaffected by the force of Earth’s gravity or the physical processes that would separate mixtures by density. The NanoRacks-COSMOS investigation used the environment aboard the station to grow and assess the 3D structure of silver nitrate crystals. The molecular structure of these superior silver nitrate crystals has applications in nanotechnology, such as creating silver nanowires for nanoscale electronics.
      Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      Share
      Details
      Last Updated Aug 14, 2025 Related Terms
      ISS Research Humans in Space International Space Station (ISS)
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Research Aircraft for electric Vertical takeoff and landing Enabling techNologies Subscale Wind Tunnel and Flight Test undergoes a free flight test on the City Environment Range Testing for Autonomous Integrated Navigation range at NASA’s Langley Research Center in Hampton, Virginia on April 22, 2025.NASA/Rob Lorkiewicz Flying the friendly skies may one day include time-saving trips in air taxis to get from point A to point B – and NASA researchers are currently working to make that future a reality.
      They are using wind tunnel and flight tests to gather data on an electric Vertical takeoff and landing (eVTOL) scaled-down small aircraft that resembles an air taxi that aircraft manufacturers can use for their own designs.
      As air taxis take to the skies, engineers need real-world data on air taxi designs to better understand flight dynamics and design better flight control systems. These systems help stabilize and guide the motion of an aircraft while in flight, making sure it flies safely in various conditions.
      Currently, most companies developing air taxis keep the information about how their aircraft behaves internal, so NASA is using this small aircraft to produce public, non-proprietary data available to all.
      “NASA’s ability to perform high-risk flight research for increasingly automated and autonomous aircraft is really important,” said Siena Whiteside, who leads the Research Aircraft for eVTOL Enabling techNologies (RAVEN) project. “As we investigate these types of vehicles, we need to be able push the aircraft to its limits and understand what happens when an unforeseen event occurs…”
      For example, Whiteside said, “…when a motor stops working. NASA is willing to take that risk and publish the data so that everyone can benefit from it.”
      Researchers Jody Miller, left, and Brayden Chamberlain, right, stand by a crane that is used for tethered flight testing of the Research Aircraft for electric Vertical takeoff and landing Enabling techNologies Subscale Wind Tunnel and Flight Test at NASA’s Langley Research Center in Hampton, Virginia on Oct. 18, 2024.NASA/Ben Simmons Testing Air Taxi Tech
      By using a smaller version of a full-sized aircraft called the RAVEN Subscale Wind Tunnel and Flight Test (RAVEN SWFT) vehicle, NASA is able to conduct its tests in a fast and cost-effective manner.
      The small aircraft weighs 38 pounds with a wingspan of six feet and has 24 independently moving components.
      Each component, called a “control effector,” can move during flight to change the aircraft’s motion – making it an ideal aircraft for advanced flight controls and autonomous flight research.
      The testing is ongoing at NASA’s Langley Research Center in Hampton, Virginia.
      Researchers first used the center’s 12-Foot Low-Speed Tunnel in 2024 and have since moved on to flight testing the small aircraft, piloting it remotely from the ground. During initial flight tests, the aircraft flew while tied to a tether. Now, the team performs free flights.
      Lessons learned from the aircraft’s behavior in the wind tunnel helped to reduce risks during flight tests. In the wind tunnel, researchers performed tests that closely mirror the motion of real flight.
      While the scale aircraft was in motion, researchers collected information about its flight characteristics, greatly accelerating the time from design to flight.
      The team also could refine the aircraft’s computer control code in real time and upload software changes to it in under 5 minutes, saving them weeks and increasing the amount of data collected.
      Researchers Ben Simmons, left, and Greg Howland, right, upload software changes in real time to the Research Aircraft for electric Vertical takeoff and landing Enabling techNologies Subscale Wind Tunnel and Flight Test at NASA’s Langley Research Center in Hampton, Virginia on Aug. 8, 2024, during testing in the 12-Foot Low-Speed Tunnel.NASA/David C. Bowman Partners in Research
      NASA developed the custom flight controls software for RAVEN SWFT using tools from the company MathWorks.
      NASA and MathWorks are partners under a Space Act Agreement to accelerate the design and testing of flight control approaches on RAVEN SWFT, which can apply to future novel aircraft.
      The work has allowed NASA’s researchers to develop new methods to reduce the time for an aircraft to achieve its first flight and become a finished product.
      RAVEN SWFT serves as a steppingstone to support the development of a potential larger, 1,000 pound-class RAVEN aircraft that will resemble an air taxi.
      This larger RAVEN aircraft is being designed in collaboration with Georgia Institute of Technology and also would serve as an acoustical research tool, helping engineers understand the noise air taxi-like aircraft create.
      The larger aircraft would allow NASA to continue to collect data and share it openly.  
      By performing flight research and making its data publicly available, NASA aims to advance U.S. leadership in technology development for safe, quiet, and affordable advanced air mobility operations.
      Watch this Air Taxi Tests Video
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      4 min read NASA Seeks Moon and Mars Innovations Through University Challenge
      Article 14 hours ago 3 min read NASA Uses Wind Tunnel to Test Advanced Air Mobility Aircraft Wing
      Article 7 days ago 3 min read Three NASA Langley Employees Win Prestigious Silver Snoopy Awards 
      Article 7 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Aug 13, 2025 EditorJim BankeContactDiana Fitzgeralddiana.r.fitzgerald@nasa.govLocationNASA Langley Research Center Related Terms
      Aeronautics Advanced Air Mobility Aeronautics Research Mission Directorate Drones & You Flight Demos Capabilities Integrated Aviation Systems Program Langley Research Center NASA Aircraft Transformational Tools Technologies Transformative Aeronautics Concepts Program View the full article
  • Check out these Videos

×
×
  • Create New...