Members Can Post Anonymously On This Site
NASA’s SpaceX-33 Resupply Mission Launches Research to Station
-
Similar Topics
-
By NASA
While it may sound like the opening to a punchline, this scientific question was at the heart of a research experiment that orbited the Moon aboard Artemis I.NASA astronaut and Expedition 65 Flight Engineer Mark Vande Hei caring for chili peppers aboard the International Space Station. NASA New research uncovers the connection between space agriculture and astronaut health. A study published in npj Microgravity shows how analyzing diverse datasets together can reveal insights that might otherwise be missed — in this case, linking space-grown food quality to astronaut nutrition and gut health.
The paper reviewed previous studies of plants grown aboard the International Space Station. The authors found that some edible plants grown in low Earth orbit have lower concentrations of essential nutrients, like calcium and magnesium, than those grown on Earth.
The reduced levels of these nutrients could make crops not as effective in mitigating the bone loss and reduced immune function that astronauts encounter in space.
Working Groups Uncover Hidden Health Connections
Three Analysis Working Groups from NASA’s Open Science Data Repository collaborated to make this paper possible. These discipline-specific groups typically work independently, but this project sparked conversations among researchers with different specialties.
Researchers combined plant data, crop nutrition profiles, gut studies, and astronaut blood biomarkers — a data integration effort of the Biological and Physical Sciences Division open science model. The work also draws on data from JAXA (Japan Aerospace Exploration Agency).
For NASA, these findings offer new insights into how to feed and support astronauts in space, particularly on long-duration missions to the Moon and Mars.
Seeks Ways to Improve Space Diets
The study also examined increased intestinal permeability — often called “leaky gut” — a condition that can result from poor nutrition and may be exacerbated by the space environment. Intestinal permeability may interfere with how astronauts absorb nutrients and regulate immune responses.
If properly engineered, space-grown crops could offer a solution to these health challenges. The team outlined several potential strategies, including bioengineering plants with higher nutrient content, incorporating more antioxidant-rich species, and designing personalized nutrition plans using astronauts’ genetic information.
The study suggests targeting specific biological pathways, such as using compounds like quercetin, an antioxidant found in certain crops, to address bone health challenges at the molecular level. The approach emphasizes designing nutrition plans based on individual astronaut physiology, including how well their digestive systems can absorb nutrients.
Related Resources
Open Science Data Repository
Open Science Data Repository Analysis Working Groups (AWG)
About BPS
NASA’s Biological and Physical Sciences Division pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomenon under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth.
View the full article
-
By NASA
Roscosmos cosmonaut Kirill Peskov, left, NASA astronauts Nichole Ayers and Anne McClain, and JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi are seen inside the SpaceX Dragon spacecraft on the company’s recovery ship shortly after splashdown in the Pacific Ocean off the coast of San Diego, California, on Aug. 9, 2025.Credit: NASA/Keegan Barber After spending almost five months in space, NASA’s SpaceX Crew-10 astronauts will discuss their science mission aboard the International Space Station during a news conference at 4:15 p.m. EDT, Wednesday, Aug. 20, from the agency’s Johnson Space Center in Houston.
NASA astronauts Anne McClain and Nichole Ayers, and JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi will answer questions about their mission. The crew returned to Earth on Aug. 9.
Live coverage of the news conference will stream on the agency’s YouTube channel. Learn how to watch NASA content through a variety of additional platforms, including social media.
This event is open to media to attend in person or virtually. For in-person, media must contact the NASA Johnson newsroom no later than 12 p.m., Tuesday, Aug. 19, at: jsccommu@mail.nasa.gov or 281-483-5111. Media participating by phone must dial into the news conference no later than 10 minutes prior to the start of the event to ask questions. Questions also may be submitted on social media using #AskNASA. A copy of NASA’s media accreditation policy is available on the agency’s website.
The crew spent 146 days aboard the orbiting laboratory, traveling nearly 62,795,205 million miles and completing 2,368 orbits around Earth. While living and working aboard the station, the crew completed hundreds of science experiments and technology demonstrations. The latest NASA space station news, images, and features are available on Instagram, Facebook, and X.
NASA’s Commercial Crew Program has delivered on its goal of safe, reliable, and cost-effective transportation to and from the International Space Station from the United States through a partnership with American private industry. This partnership is opening access to low Earth orbit and the International Space Station to more people, more science, and more commercial opportunities. For almost 25 years, people have continuously lived and worked aboard the space station, advancing scientific knowledge and demonstrating new technologies that enable us to prepare for human exploration of the Moon as we prepare for Mars.
Learn more about NASA’s Commercial Crew Program at:
https://www.nasa.gov/commercialcrew
-end-
Joshua Finch
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov
Courtney Beasley
Johnson Space Center, Houston
281-483-5111
courtney.m.beasley@nasa.gov
Share
Details
Last Updated Aug 14, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
Commercial Crew International Space Station (ISS) ISS Research Johnson Space Center View the full article
-
By Space Force
The US Space Force, in partnership with the Air Force Rapid Capabilities Office and SpaceX, is making final preparations to launch the eighth mission of the X-37B Orbital Test Vehicle.
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Research Aircraft for electric Vertical takeoff and landing Enabling techNologies Subscale Wind Tunnel and Flight Test undergoes a free flight test on the City Environment Range Testing for Autonomous Integrated Navigation range at NASA’s Langley Research Center in Hampton, Virginia on April 22, 2025.NASA/Rob Lorkiewicz Flying the friendly skies may one day include time-saving trips in air taxis to get from point A to point B – and NASA researchers are currently working to make that future a reality.
They are using wind tunnel and flight tests to gather data on an electric Vertical takeoff and landing (eVTOL) scaled-down small aircraft that resembles an air taxi that aircraft manufacturers can use for their own designs.
As air taxis take to the skies, engineers need real-world data on air taxi designs to better understand flight dynamics and design better flight control systems. These systems help stabilize and guide the motion of an aircraft while in flight, making sure it flies safely in various conditions.
Currently, most companies developing air taxis keep the information about how their aircraft behaves internal, so NASA is using this small aircraft to produce public, non-proprietary data available to all.
“NASA’s ability to perform high-risk flight research for increasingly automated and autonomous aircraft is really important,” said Siena Whiteside, who leads the Research Aircraft for eVTOL Enabling techNologies (RAVEN) project. “As we investigate these types of vehicles, we need to be able push the aircraft to its limits and understand what happens when an unforeseen event occurs…”
For example, Whiteside said, “…when a motor stops working. NASA is willing to take that risk and publish the data so that everyone can benefit from it.”
Researchers Jody Miller, left, and Brayden Chamberlain, right, stand by a crane that is used for tethered flight testing of the Research Aircraft for electric Vertical takeoff and landing Enabling techNologies Subscale Wind Tunnel and Flight Test at NASA’s Langley Research Center in Hampton, Virginia on Oct. 18, 2024.NASA/Ben Simmons Testing Air Taxi Tech
By using a smaller version of a full-sized aircraft called the RAVEN Subscale Wind Tunnel and Flight Test (RAVEN SWFT) vehicle, NASA is able to conduct its tests in a fast and cost-effective manner.
The small aircraft weighs 38 pounds with a wingspan of six feet and has 24 independently moving components.
Each component, called a “control effector,” can move during flight to change the aircraft’s motion – making it an ideal aircraft for advanced flight controls and autonomous flight research.
The testing is ongoing at NASA’s Langley Research Center in Hampton, Virginia.
Researchers first used the center’s 12-Foot Low-Speed Tunnel in 2024 and have since moved on to flight testing the small aircraft, piloting it remotely from the ground. During initial flight tests, the aircraft flew while tied to a tether. Now, the team performs free flights.
Lessons learned from the aircraft’s behavior in the wind tunnel helped to reduce risks during flight tests. In the wind tunnel, researchers performed tests that closely mirror the motion of real flight.
While the scale aircraft was in motion, researchers collected information about its flight characteristics, greatly accelerating the time from design to flight.
The team also could refine the aircraft’s computer control code in real time and upload software changes to it in under 5 minutes, saving them weeks and increasing the amount of data collected.
Researchers Ben Simmons, left, and Greg Howland, right, upload software changes in real time to the Research Aircraft for electric Vertical takeoff and landing Enabling techNologies Subscale Wind Tunnel and Flight Test at NASA’s Langley Research Center in Hampton, Virginia on Aug. 8, 2024, during testing in the 12-Foot Low-Speed Tunnel.NASA/David C. Bowman Partners in Research
NASA developed the custom flight controls software for RAVEN SWFT using tools from the company MathWorks.
NASA and MathWorks are partners under a Space Act Agreement to accelerate the design and testing of flight control approaches on RAVEN SWFT, which can apply to future novel aircraft.
The work has allowed NASA’s researchers to develop new methods to reduce the time for an aircraft to achieve its first flight and become a finished product.
RAVEN SWFT serves as a steppingstone to support the development of a potential larger, 1,000 pound-class RAVEN aircraft that will resemble an air taxi.
This larger RAVEN aircraft is being designed in collaboration with Georgia Institute of Technology and also would serve as an acoustical research tool, helping engineers understand the noise air taxi-like aircraft create.
The larger aircraft would allow NASA to continue to collect data and share it openly.
By performing flight research and making its data publicly available, NASA aims to advance U.S. leadership in technology development for safe, quiet, and affordable advanced air mobility operations.
Watch this Air Taxi Tests Video
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
4 min read NASA Seeks Moon and Mars Innovations Through University Challenge
Article 14 hours ago 3 min read NASA Uses Wind Tunnel to Test Advanced Air Mobility Aircraft Wing
Article 7 days ago 3 min read Three NASA Langley Employees Win Prestigious Silver Snoopy Awards
Article 7 days ago Keep Exploring Discover More Topics From NASA
Missions
Artemis
Aeronautics STEM
Explore NASA’s History
Share
Details
Last Updated Aug 13, 2025 EditorJim BankeContactDiana Fitzgeralddiana.r.fitzgerald@nasa.govLocationNASA Langley Research Center Related Terms
Aeronautics Advanced Air Mobility Aeronautics Research Mission Directorate Drones & You Flight Demos Capabilities Integrated Aviation Systems Program Langley Research Center NASA Aircraft Transformational Tools Technologies Transformative Aeronautics Concepts Program View the full article
-
By Space Force
Space Systems Command and United Launch Alliance's launch teams successfully completed the inaugural launch of a Vulcan Centaur rocket, carrying the U.S. Space Force-106 mission into geosynchronous Earth orbit.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.