Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      Live streaming the moon 12th August
    • By NASA
      This artist’s concept shows NASA’s Neil Gehrels Swift Observatory orbiting above Earth.Credit: NASA’s Goddard Space Flight Center/Chris Smith (KBRwyle) To drive the development of key space-based capabilities for the United States, NASA is exploring an opportunity to demonstrate technology to raise a spacecraft’s orbit to a higher altitude. Two American companies – Cambrian Works of Reston, Virginia, and Katalyst Space Technologies of Flagstaff, Arizona – will develop concept design studies for a possible orbit boost for the agency’s Neil Gehrels Swift Observatory.
      Since its launch in 2004, NASA’s Swift mission has led the agency’s fleet of space telescopes in investigating changes in the high-energy universe. The spacecraft’s low Earth orbit has been decaying gradually, which happens to most satellites over time. Because of recent increases in the Sun’s activity, however, Swift is experiencing additional atmospheric drag, speeding up its orbital decay. This lowering orbit presents an opportunity for NASA to advance a U.S. industry capability, while potentially extending the science lifetime of the Swift mission. The concept studies will help determine whether extending Swift’s critical scientific capabilities would be more cost-effective than replacing those capabilities with a new observatory.
      “NASA Science is committed to leveraging commercial technologies to find innovative, cost-effective ways to open new capabilities for the future of the American space sector,” said Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington. “To maintain Swift’s role in our portfolio, NASA Science is uniquely positioned to conduct a rare in-space technology demonstration to raise the satellite’s orbit and solidify American leadership in spacecraft servicing.”
      The concept studies are being developed under Phase III awards through NASA’s Small Business Innovation Research (SBIR) Program, managed by the agency’s Space Technology Mission Directorate, to American small businesses from a pool of existing participants. This approach allows NASA to rapidly explore affordable possibilities to boost Swift on a shorter development timeline than would otherwise be possible, given the rapid rate at which Swift’s orbit is decaying.
      At this time NASA does not have plans for an orbit boost mission and could still allow the spacecraft to reenter Earth’s atmosphere, as many satellites do at the end of their lifetimes. NASA is studying a potential Swift boost to support innovation in the American space industry, while gaining a better understanding of the available options, the technical feasibility, and the risks involved.
      NASA will also work with Starfish Space of Seattle, Washington, to analyze the potential of performing a Swift boost using an asset under development on an existing Phase III SBIR award. Starfish is currently developing the Small Spacecraft Propulsion and Inspection Capability (SSPICY) demonstration for NASA, with the primary objective of inspecting multiple U.S.-owned defunct satellites in low Earth orbit.
      “Our SBIR portfolio exists for circumstances like this – where investments in America’s space industry provide NASA and our partners an opportunity to develop mutually beneficial capabilities,” said Clayton Turner, associate administrator, Space Technology Mission Directorate, NASA Headquarters. “Whether we choose to implement the technologies in this circumstance, understanding how to boost a spacecraft’s orbit could prove valuable for future applications.”
      Swift was designed to observe gamma-ray bursts, the universe’s most powerful explosions, and provide information for other NASA and partner telescopes to follow up on these events. Its fast and flexible observations have been instrumental in advancing how scientists study transient events to understand how the universe works. For more than two decades, Swift has led NASA’s missions in providing new insights on these events, together broadening our understanding of everything from exploding stars, stellar flares, and eruptions in active galaxies, to comets and asteroids in our own solar system and high-energy lightning events on Earth.
      As neutron stars collide, some of the debris blasts away in particle jets moving at nearly the speed of light, producing a brief burst of gamma rays.NASA’s Goddard Space Flight Center/CI Lab “Over its extremely productive lifetime, Swift has been a key player in NASA’s network of space telescopes – directing our fleet to ensure we keep a watchful eye on changes in the universe, both far off and close to home,” said Shawn Domagal-Goldman, acting director, Astrophysics Division, NASA Headquarters. “Now, this long-lived science mission is presenting us with a new opportunity: partnering with U.S. industry to rapidly explore efficient, state-of-the-art solutions that could extend Swift’s transformative work and advance private spacecraft servicing.”
      Cambrian and Katalyst have each been awarded $150,000 under Phase III SBIR contracts for concept design studies. The NASA SBIR program is part of America’s Seed Fund, the nation’s largest source of early-stage, non-dilutive funding for innovative technologies. Through this program, entrepreneurs, startups, and small businesses with less than 500 employees can receive funding and non-monetary support to build, mature, and commercialize their technologies, advancing NASA missions and helping solve important problems facing our country.
      NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the Swift mission in collaboration with Penn State, the Los Alamos National Laboratory in New Mexico, and Northrop Grumman Space Systems in Dulles, Virginia. Other partners include the UK Space Agency, University of Leicester and Mullard Space Science Laboratory in the United Kingdom, Brera Observatory in Italy, and the Italian Space Agency. To learn more about the Swift mission, visit:
      https://www.nasa.gov/swift
      -end-
      Alise Fisher / Jasmine Hopkins
      Headquarters, Washington
      202-358-2546 / 321-432-4624
      alise.m.fisher@nasa.gov / jasmine.s.hopkins@nasa.gov
      View the full article
    • By NASA
      An artist’s concept of the Moon (right) and Mars (center) against the starry expanse of space. A sliver of the Earth’s horizon can be seen in the foreground.Credit: NASA NASA is accepting U.S. submissions for the second phase of the agency’s LunaRecycle Challenge, a Moon-focused recycling competition. The challenge aims to develop solutions for recycling common trash materials – like fabrics, plastics, foam, and metals – that could accumulate from activities such as system operations, industrial activities, and building habitats in deep space.
      Phase 2 of the LunaRecycle Challenge is divided into two levels: a milestone round and the final round. Submissions for the milestone round are open until January 2026, with finalists from that round announced in February. Up to 20 finalists from the milestone round will compete in the challenge’s in-person prototype demonstrations and final judging, slated for the following August. Cash prizes totaling $2 million are available for successful solutions in both rounds. 
      “NASA is eager to see how reimagining these materials can be helpful to potential future planetary surface missions,” said Jennifer Edmunson, acting program manager for Centennial Challenges at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “I’m confident focusing on the most critical trash items – and integration of the prototype and digital twin competition tracks – will yield remarkable solutions that could enable a sustainable human presence off-Earth and transform the future of space exploration.”
      Estimates indicate a crew of four astronauts could generate more than 2,100 kilograms (4,600 pounds) of single-use waste – including food packaging, plastic films, foam packaging, clothing, and more – within 365 days. Successful solutions in LunaRecycle’s Phase 2 should manage realistic trash volumes while minimizing resource inputs and crew time and operating safely with minimal hazards.
      Phase 2 is only open to U.S. individuals and teams. Participants can submit solutions regardless of whether they competed in the earlier Phase 1 competition.
      All Phase 2 participants are expected to build a physical prototype. In addition, participants can submit a digital twin of their prototype for additional awards in the milestone and final rounds.
      The LunaRecycle Challenge is a NASA Centennial Challenge, part of the Prizes, Challenges and Crowdsourcing Program within NASA’s Space Technology Mission Directorate. LunaRecycle Phase 1 received record-breaking interest from the global innovator community. The challenge received more than 1,200 registrations – more than any competition in the 20-year history of Centennial Challenges – and a panel of 50 judges evaluated nearly 200 submissions. Seventeen teams were selected as Phase 1 winners, representing five countries and nine U.S. states. Winners were announced via livestream on NASA Marshall’s YouTube channel.
      LunaRecycle is managed at NASA Marshall with subject matter experts primarily at the center, as well as NASA’s Kennedy Space Center in Florida and NASA’s Ames Research Center in California’s Silicon Valley. NASA, in partnership with The University of Alabama College of Engineering, manages the challenge with coordination from former Centennial Challenge winner AI SpaceFactory and environmental sustainability industry member Veolia.
      To learn more about LunaRecycle’s second phase, including registration for upcoming webinars, visit:
                                                                  https://www.nasa.gov/lunarecycle
      -end-
      Jasmine Hopkins
      NASA Headquarters, Washington
      321-432-4624
      jasmine.s.hopkins@nasa.gov
      Taylor Goodwin
      Marshall Space Flight Center, Huntsville, Ala.
      256-544-0034
      taylor.goodwin@nasa.gov
      Share
      Details
      Last Updated Aug 11, 2025 LocationNASA Headquarters Related Terms
      NASA Headquarters Ames Research Center Centennial Challenges Kennedy Space Center Marshall Space Flight Center Prizes, Challenges, and Crowdsourcing Program Space Technology Mission Directorate View the full article
    • By Amazing Space
      Views of the moon - NASA's Lunar Reconnaissance Orbiter
    • By Amazing Space
      5 Fascinating Lunar Features Under the Sturgeon Moon 🌕 | #SturgeonMoon #FullMoon #Astronomy
  • Check out these Videos

×
×
  • Create New...