Members Can Post Anonymously On This Site
Acting NASA Administrator Reflects on Legacy of Astronaut Jim Lovell
-
Similar Topics
-
By NASA
Credit: NASA NASA has chosen a group of contractors to supply multiple agency facilities with liquid and gaseous helium for at least the next two years.
The NASA Agency-wide Supply of Liquid and Gaseous Helium contract is a fixed-price indefinite-delivery requirements contract with firm-fixed-price delivery orders. The awards have a total estimated value of approximately $105.1 million. The performance period begins Wednesday, Oct. 1, to Sept. 30, 2027, with three one-year option periods that could extend the contract to Sept. 30, 2030.
The awardees include:
Messer, LLC in Bridgewater, New Jersey Linde, Inc. in Danbury, Connecticut Airgas USA, LLC in Tulsa, Oklahoma, and Long Beach, California Under this contract, contractors will supply about 2.6 million liters of liquid helium and 90.6 million standard cubic feet of gaseous helium for multiple NASA centers and their respective facilities. These include Goddard Space Flight Center in Greenbelt, Maryland, Glenn Research Center in Cleveland, Jet Propulsion Laboratory in Southern California, Johnson Space Center in Houston, Kennedy Space Center in Florida, Langley Research Center in Hampton, Virginia, Marshall Space Flight Center in Huntsville, Alabama, and Stennis Space Center in Bay St. Louis, Mississippi.
For information about the agency and its programs, visit:
https://www.nasa.gov
-end-
Tiernan Doyle
Headquarters, Washington
202-358-1600
tiernan.doyle@nasa.gov
Share
Details
Last Updated Aug 08, 2025 LocationNASA Headquarters Related Terms
NASA Centers & Facilities Glenn Research Center Goddard Space Flight Center Jet Propulsion Laboratory Johnson Space Center Kennedy Space Center Langley Research Center Marshall Space Flight Center Stennis Space Center View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA employees Broderic J. Gonzalez, left, and David W. Shank install pieces of a 7-foot wing model in preparation for testing in the 14-by-22-Foot Subsonic Wind Tunnel at NASA’s Langley Research Center in Hampton, Virginia, in May 2025. The lessons learned will be shared with the public to support advanced air mobility aircraft development. NASA/Mark Knopp The advanced air mobility industry is currently working to produce novel aircraft ranging from air taxis to autonomous cargo drones, and all of those designs will require extensive testing – which is why NASA is working to give them a head-start by studying a special kind of model wing. The wing is a scale model of a design used in a type of aircraft called a “tiltwing,” which can swing its wing and rotors from vertical to horizontal. This allows the aircraft to take off, hover, and land like a helicopter, or fly like a fixed-wing airplane. This design enables versatility in a range of operating environments.
Several companies are working on tiltwings, but NASA’s research into the scale wing will also impact nearly all types of advanced air mobility aircraft designs.
“NASA research supporting advanced air mobility demonstrates the agency’s commitment to supporting this rapidly growing industry,” said Brandon Litherland, principal investigator for the test at NASA’s Langley Research Center in Hampton, Virginia. “Tool improvements in these areas will greatly improve our ability to accurately predict the performance of new advanced air mobility aircraft, which supports the adoption of promising designs. Gaining confidence through testing ensures we can identify safe operating conditions for these new aircraft.”
NASA researcher Norman W. Schaeffler adjusts a propellor, which is part of a 7-foot wing model that was recently tested at NASA’s Langley Research Center in Hampton, Virginia. In May and June, NASA researchers tested the wing in the 14-by-22-Foot Subsonic Wind Tunnel to collect data on critical propeller-wing interactions. The lessons learned will be shared with the public to support advanced air mobility aircraft development.NASA/Mark Knopp In May and June, NASA tested a 7-foot wing model with multiple propellers in the 14-by-22-Foot Subsonic Wind Tunnel at Langley. The model is a “semispan,” or the right half of a complete wing. Understanding how multiple propellers and the wing interact under various speeds and conditions provides valuable insight for the advanced air mobility industry. This information supports improved aircraft designs and enhances the analysis tools used to assess the safety of future designs.
This work is managed by the Revolutionary Vertical Lift Technology project under NASA’s Advanced Air Vehicles Program in support of NASA’s Advanced Air Mobility mission, which seeks to deliver data to guide the industry’s development of electric air taxis and drones.
“This tiltwing test provides a unique database to validate the next generation of design tools for use by the broader advanced air mobility community,” said Norm Schaeffler, the test director, based at Langley. “Having design tools validated for a broad range of aircraft will accelerate future design cycles and enable informed decisions about aerodynamic and acoustic performance.”
In May and June, NASA researchers tested a 7-foot wing model in the 14-by-22-Foot Subsonic Wind Tunnel at NASA’s Langley Research Center in Hampton, Virginia. The team collected data on critical propeller-wing interactions over the course of several weeks.NASA/Mark Knopp The wing is outfitted with over 700 sensors designed to measure pressure distribution, along with several other types of tools to help researchers collect data from the wing and propeller interactions. The wing is mounted on special sensors to measure the forces applied to the model. Sensors in each motor-propeller hub to measure the forces acting on the components independently.
The model was mounted on a turntable inside the wind tunnel, so the team could collect data at different wing tilt angles, flap positions, and rotation rates. The team also varied the tunnel wind speed and adjusted the relative positions of the propellers.
Researchers collected data relevant to cruise, hover, and transition conditions for advanced air mobility aircraft. Once they analyze this data, the information will be released to industry on NASA’s website.
Share
Details
Last Updated Aug 07, 2025 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.gov Related Terms
Armstrong Flight Research Center Advanced Air Mobility Advanced Air Vehicles Program Aeronautics Drones & You Langley Research Center Revolutionary Vertical Lift Technology Explore More
3 min read Three NASA Langley Employees Win Prestigious Silver Snoopy Awards
Article 3 hours ago 3 min read NASA Drop Test Supports Safer Air Taxi Design and Certification
Article 1 week ago 3 min read NASA Rehearses How to Measure X-59’s Noise Levels
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
From left to right, Astronaut Tracy Dyson, Jeremy Shidner, Sara R. Wilson, and Christopher Broadaway pose for a photo after the 2025 Silver Snoopy Awards ceremony. NASA/Mark Knopp Three employees from NASA’s Langley Research Center in Hampton, Virginia recently earned the Silver Snoopy award, a prestigious honor given to NASA employees and contractors across the agency for exceptional achievements related to spaceflight safety or mission success. Christopher Broadaway, Jeremy Shidner, and Sara Wilson received the awards during a ceremony held at the center on July 22.
The Silver Snoopy award is given personally by NASA astronauts and is presented to less than one percent of the agency’s workforce annually. The award is one of several overseen by the Space Flight Awareness (SFA) Program at NASA. Established in 1963, the SFA Program is vital in ensuring quality and flight safety of America’s space program. The SFA Program works to highlight the individuals behind the success of NASA’s programs as well as motivate the next generation of innovators and cosmic explorers.
Astronaut Tracy Dyson visited Langley to present the Silver Snoopy lapel pin and a framed Silver Snoopy certificate. Dyson flew aboard the space shuttle Endeavor on STS-118, served as flight engineer for Expedition 23/24, and conducted hundreds of hours of scientific investigations aboard the International Space Station for Expedition 70/71. She has spent a total of 373 days in space and dedicated over 23 hours to spacewalks.
As a flight engineer with substantial experience, Dyson understands the importance of space flight safety.
“Those who are receiving this award didn’t do it because they came nine to five and left. It’s not because it was just their job,” she said. “It’s because it’s their life, and our lives are safer and better for it.”
Astronaut Tracy Dyson signs certificates of appreciation prior to the 2025 Silver Snoopy Awards ceremony. NASA/Mark Knopp Silver Snoopy recipient and aerospace engineer Jeremey Shidner echoed Dyson’s perspective.
“This level of trust is particularly profound because astronauts understand better than anyone the countless systems, procedures, and people that must work flawlessly for a mission to succeed,” he said. “When astronauts single someone out for recognition, it reflects their confidence that this person embodies the same commitment to excellence and safety that they themselves must maintain.”
The prestigious award consists of a certificate of appreciation signed by Dyson, an authentication letter, and a miniature sterling silver lapel pin in the shape of the well-loved character Snoopy from the comic strip “Peanuts.” Each pin awarded has flown in space. The pins awarded to Langley’s recipients flew aboard STS-118.
The 2025 Silver Snoopy Award pins NASA/Mark Knopp Here are the three award recipients from Langley and their achievements:
Christopher Broadaway: For exemplary support in assisting the Commercial Crew Program ensure safety and mission success in industry partners’ human spaceflight missions.
Jeremy Shidner: For significant contributions to the Commercial Crew Program to ensure flight safety and mission success for Entry, Descent, and Landing. Collaborating closely with the Crew Flight Test team and Mission Operations Flight Dynamics Officers, he refined the simulation model to incorporate real pilot performance data, which resulted in increased entry accuracy, eliminating an elevated risk to crew safety.
Sara R. Wilson: For engineering excellence in the application of advanced statistical tools and methods characterizing NASA’s human spaceflight missions. She also played a key role in developing standardized tests for advanced lunar spacesuit gloves, creating consistency in evaluating materials for extreme lunar environments.
Sarah Reeps and Layla Smith
NASA Langley Research Center
Share
Details
Last Updated Aug 07, 2025 Related Terms
Langley Research Center General NASA Centers & Facilities Explore More
4 min read As NASA Missions Study Interstellar Comet, Hubble Makes Size Estimate
A team of astronomers has taken the sharpest-ever picture of the unexpected interstellar comet 3I/ATLAS…
Article 48 minutes ago 7 min read Wade Sisler: Aficionado of Wonder Serving the Cosmos
Article 3 hours ago 4 min read NASA Supercomputers Take on Life Near Greenland’s Most Active Glacier
Article 20 hours ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.