Members Can Post Anonymously On This Site
What to See on the Moon Tonight (Aug 5, 2025) — 10-Minute Guide
-
Similar Topics
-
By European Space Agency
Week in images: 08-12 September 2025
Discover our week through the lens
View the full article
-
By NASA
NSTGRO Homepage
Andrew Arends
University of California, Davis
Astronaut-Powered Laundry Machine
Allan Attia
Stanford University
Computational Modeling of Lithium Magnetoplasmadynamic Thruster for Nuclear Electric Propulsion
Michael Auth
University of California, Santa Barbara
Non-Contact, Real-Time Diagnostics of Battery Aging in 18650 Cells During the Lunar Night Using Acoustic Spectroscopy
Nicholas Brennan
Cornell University
Spin Wave-Based Neuromorphic Coprocessor for Advanced AI Applications
John Carter
Purdue University
Spectroscopic Measurements and Kinetic Modeling of Non-Boltzmann CN for Entry Systems Modeling
Thomas Clark
University of Colorado, Boulder
Data-Driven Representations of Trajectories in Cislunar Space
Nicholas Cmkovich
University of Wisconsin-Madison
Development of Radiation Tolerant Additively Manufactured Refractory Compositionally Complex Alloys
Kara Hardy
Michigan Technological University
Design and Optimization of Cuttlebone-Inspired Cellular Materials Using Turing Systems
Tyler Heggenes
Utah State University
Mitigating Spacecraft Charging Issues Through High-Precision, Temperature-Dependent Measurements of Dynamic Radiation Induced Conductivity
Joseph Hesse-Withbroe
University of Colorado, Boulder
Decreasing Astronaut Radiation Doses with Magnetic Shields
Niya Hope-Glenn
Massachusetts Institute of Technology
Investigating the Selectivity of CO2 Hydrogenation to Ethylene in a Plasma Reactor for Mars ISRU
Adrianna Hudyma
University of Minnesota
Biorthogonal Translation System for Production of Pharmaceuticals During Space Missions
Tushaar Jain
Carnegie Mellon University
Towards On-Demand Planetary Landing Through On-Board Autonomous Mapping and Cross-Modality Map Relative Localization
Devin Johnson
Purdue University
Numerical and Experimental Methodology to Optimize Propellant Injection, Mixing, and Response in Rotating Detonation Engines
Jack Joshi
University of Texas at Austin
State Representations for Measurement Fusion and Uncertainty Propagation in Cislunar Regime
John Knoll
William Marsh Rice University
Dexterous Manipulation via Vision-Intent-Action Models
Joseph Ligresti
Purdue University
Effects of Vacuum Conditions on FORP Reactivity and Long-Term Viability of MON-25/MMH Thrusters
Alexander Madison
University of Central Florida
Hybrid Microwave Sintering of Lunar Regolith with 2.45GHz and 18-28GHz
Aurelia Moriyama-Gurish
Yale University
Investigating Fundamental High Strain Rate Deformation Mechanisms to Bridge the Experiment-Computation Gap and Local Thermal Shock Response in C103
Sophia Nowak
University of Wisconsin-Madison
Pulsed Laser System for Calibration of High Resolution X-ray Microcalorimeters
Jacob Ortega
Missouri University of Science and Technology
Forging the Future Lunar Settlement with In-Situ Aluminum Extraction
John Riley O’Toole
University of Michigan
Laser-Based Measurements of Electron Properties in Hall Effect Thrusters with Non-Conventional Propellants Enabling for Cis-Lunar, Mars, and Deep Space Missions
Cort Reinarz
Texas A&M University
Utilizing Biometrics in Closed-Loop Compression Garment Systems as a Countermeasure for Orthostatic Intolerance
Erica Sawczynec
University of Texas at Austin
A Monolithic Cross-Dispersed Grism for Near-Infrared Spectroscopy
Ingrid Shan
California Institute of Technology
Micro-Architected Metallic Lattices for Lunar Dust Mitigation
Pascal Spino
Massachusetts Institute of Technology
Centimeter-Scale Robots for Accessing Europa’s Benthic Zone
Benjamin Stern
Northwestern University, Chicago
A Near-Field Thermoreflectance Approach for Nanoscale Thermal Mapping on Nanostructured Sige
Titus Szobody
William Marsh Rice University
Leveraging Polymeric Photochemistry in Ionic Liquid-Based Mirror Synthesis for Space Telescope Optics
Seneca Velling
California Institute of Technology
Constraining Weathering Kinetics Under Experimentally Simulated Venus Conditions
Zhuochen Wang
Georgia Institute of Technology
Optimal Covariance Steering on Lie Groups for Precision Powered Descent
Stanley Wang
Stanford University
Compact Robots with Long Reach for Space Exploration and Maintenance Tasks
Thomas Westenhofer
University of California, Irvine
Kinetic Modeling of Carbon Mass Loss in Nuclear Thermal Propulsion
Andrew Witty
Purdue University
Scalable Nanoporous Paints with High Solar Reflectance and Durability in Space Environments
Jonathan Wrieden
University of Maryland, College Park
A Stochastic Model for Predicting Charged Orbital Debris Probability Densities by Utilizing Earth’s Electromagnetic Field to Guide Active Debris Remediation Efforts
Jasen Zion
California Institute of Technology
Large-Format, Fast SNSPD Cameras Benchmarked with Neutral Atom Arrays
Keep Exploring Discover More Topics From NASA
Space Technology Mission Directorate
Space Technology Research Grants
NASA Space Technology Graduate Research Opportunities (NSTGRO)
Technology
Share
Details
Last Updated Sep 12, 2025 EditorLoura Hall Related Terms
Space Technology Research Grants Space Technology Mission Directorate View the full article
-
By NASA
Ames Science Directorate’s Stars of the Month: September 2025
The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) Taejin Park, Lydia Schweitzer, and Rachel Morgan. Their commitment to the NASA mission represents the entrepreneurial spirit, technical expertise, and collaborative disposition needed to explore this world and beyond.
Earth Science Star: Taejin Park
Taejin Park is a NASA Earth eXchange (NEX) research scientist within the Biospheric Science Branch, for the Bay Area Environmental Research Institute (BAERI). As the Project Scientist for the Wildfire, Ecosystem Resilience, & Risk Assessment (WERK) project, he has exhibited exemplary leadership and teamwork leading to this multi-year study with the California Natural Resources Agency (CNRA) and California Air Resources Board (CARB) to develop tracking tools of statewide ecological condition, disturbance, and recovery efforts related to wildfires.
Space Science and Astrobiology Star: Lydia Schweitzer
Lydia Schweitzer is a research scientist within the Planetary Systems Branch for the Bay Area Environmental Research Institute (BAERI) as a member of the Neutron Spectrometer System (NSS) team with broad contributions in instrumentation, robotic rovers and lunar exploration. Lydia is recognized for her leadership on a collaborative project to design and build a complex interface unit that is crucial for NSS to communicate with the Japanese Space Agency’s Lunar Polar eXploration rover mission (LUPEX). In addition, she is recognized for her role as an instrument scientist for the Volatiles Investigating Polar Exploration Rover (VIPER) and MoonRanger missions.
Space Science and Astrobiology Star: Rachel Morgan
Rachel Morgan is an optical scientist in the Astrophysics Branch for the SETI Institute. As AstroPIC’s lead experimentalist and the driving force behind the recently commissioned photonic testbed at NASA Ames, this month she achieved a record 92 dB on-chip suppression on a single photonic-integrated chip (PIC) output channel. This advances critical coronagraph technology and is a significant milestone relevant to the Habitable Worlds Observatory.
View the full article
-
By NASA
4 Min Read NASA Uses Colorado Mountains for Simulated Artemis Moon Landing Course
NASA has certified a new lander flight training course using helicopters, marking a key milestone in crew training for Artemis missions to the Moon. Through Artemis, NASA explore the lunar South Pole, paving the way for human exploration farther into the solar system, including Mars.
The mountains in northern Colorado offer similar visual illusions and flight environments to the Moon. NASA partnered with the Colorado Army National Guard at the High-Altitude Army National Guard Aviation Training Site near Gypsum, Colorado, to develop the foundational flight training course.
“Artemis astronauts who will land on the Moon will need to master crew coordination and communication with one another,” said Paul Felker, acting deputy director of flight operations at NASA’s Johnson Space Center in Houston. “Much like they will on the Moon, astronaut teams are learning how to work together efficiently in a stressful environment to identify hazards, overcome degraded visual environments, and evaluate risks to successfully land.”
During the two-week certification run in late August, NASA astronauts Mark Vande Hei and Matthew Dominick participated in flight and landing training to help certify the course. The pair took turns flying a helicopter and navigating to landing zones. Artemis flight crew trainers, mission control leads, and lunar lander operational experts from NASA Johnson joined them on each helicopter flight to assess the instruction, training environment, and technical applications for crewed lunar missions.
NASA astronauts Matthew Dominick (left) and Mark Vande Hei (right) prepare to fly out to a landing zone in the Rocky Mountains as part of the certification run for the NASA Artemis course at the High-Altitude Army National Guard Aviation Training Site in Gypsum, Colorado, Aug. 26. NASA/Michael DeMocker A LUH-72 Lakota helicopter stirs up dust at the High-Altitude Army National Guard Aviation Training Site in Gypsum, Colorado, Aug. 28. NASA/Charles Beason A member of the Colorado Army National Guard peers out of a CH-47 Chinook in preparation for landing Aug. 22. NASA and trained instructors from the Army National Guard use a range of aircraft during flight training. Chinooks are used to demonstrate challenges with landing on the Moon. NASA/Charles Beason NASA astronauts Matthew Dominick (left) and Mark Vande Hei (right) celebrate after returning from a training flight Aug. 26 during a certification run for a lander flight training course for crewed Artemis missions. NASA/Michael DeMocker Paired with trained instructors with the Army National Guard, astronauts fly to mountaintops and valleys in a range of aircraft, including LUH-72 Lakotas, CH-47 Chinooks, and UH-60 Black Hawks. NASA/Charles Beason NASA astronaut Mark Vande Hei lands a helicopter as part of flight and landing training at the High Altitude Army National Guard Aviation Training Site Aug. 28. NASA/Michael DeMocker A member of the Colorado Army National Guard looks out of a CH-47 Chinook as it lands at a steep angle Aug. 29. A crater on the Moon could have a similar incline, posing landing challenges for future crewed Artemis missions. NASA/Michael DeMocker A LUH-72 Lakota helicopter flies over the mountains of northern Colorado Aug. 28 during a certification run for a lander flight training course for crewed Artemis missions. The mountains and valleys in Colorado have similar visual illusions to the Moon. NASA/Michael DeMocker The patch for the High-Altitude Army National Guard Aviation Training Site is pictured in the cupola of the International Space Station in 2023. NASA and the Colorado Army National Guard began working together in 2021 to develop a foundational lunar lander simulated flight training course for Artemis. NASA The NASA astronauts and trained instructor pilots with the Army National Guard flew to progressively more challenging landing zones throughout the course, navigating the mountainous terrain, and working together to quickly and efficiently land the aircraft.
Teams can train year-round using the course. Depending on the season, the snowy or dusty conditions can cause visual obstruction. Lunar dust can cause similar visual impairment during future crewed missions.
“Here in Colorado, we have specifically flown to dusty areas, so we know and understand just how important dust becomes during the final descent phase,” Vande Hei said. “Dust will interact with the lander thrusters on the Moon. During our flight training, we have had to revert to our instruments – just like we would on the Moon – because astronauts may lose all their visual cues when they’re near the surface.”
During Artemis III, four astronauts inside the agency’s Orion spacecraft on top of the SLS (Space Launch System rocket) will launch to meet SpaceX’s Starship Human Landing System in lunar orbit. Orion will then dock with the Starship system and two astronauts will board the lander. Astronauts will use the Starship lander to safely transport themselves from lunar orbit to the lunar surface. Following surface operations, the two astronauts will use Starship to launch from the lunar surface, back to lunar orbit, and dock with Orion to safely journey back to Earth.
The NASA-focused course has been in development since 2021. Vande Hei and Dominick are the 24th and 25th NASA astronauts to participate in and evaluate the course based on functionality and Artemis mission needs. One ESA (European Space Agency) astronaut has also participated in the course.
“This course will likely be one of the first group flight training opportunities for the Artemis III crew,” said NASA astronaut Doug Wheelock, who helped to develop the foundational training course for the agency. “While the astronauts will also participate in ground and simulation training in Ohio and Texas, the real-world flight environment in Colorado at offers astronauts an amazing simulation of the problem solving and decision making needed to control and maneuver a lunar lander across an equally dynamic landscape.”
Though the course is now certified for Artemis, teams will continue to evaluate the training based on astronaut and technical feedback to ensure mission success and crew safety.
Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars for the benefit of all.
For more information about Artemis visit:
https://www.nasa.gov/artemis
Share
Details
Last Updated Sep 10, 2025 EditorBeth RidgewayContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
Human Landing System Program Artemis Artemis 3 Humans in Space Marshall Space Flight Center Explore More
3 min read NASA Launches 2026 Lunabotics Challenge
Article 2 days ago 3 min read NASA Seeks Industry Input on Next Phase of Commercial Space Stations
Article 5 days ago 4 min read NASA Glenn Tests Mini-X-Ray Technology to Advance Space Health Care
Article 6 days ago Keep Exploring Discover More Topics From NASA
Artemis
Human Landing System
Artemis III
Humans In Space
View the full article
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.