Jump to content

STEM Educators Are Bringing Hands-On NASA Science into Virginia Classrooms


Recommended Posts

  • Publishers
Posted

4 min read

STEM Educators Are Bringing Hands-On NASA Science into Virginia Classrooms

Professional learning experiences are integral to the enhancement of classroom instruction. Teachers, at the forefront of Science, Technology, Engineering, & Mathematics (STEM) education, play a key role in the advancement of STEM learning ecosystems and citizen science.

On June 24-25, 2025 – despite a major east coast heat wave – twenty-four educators from eight school districts in the Hampton Roads region of southeastern Virginia (Newport News, Hampton City, Virginia Beach City, Isle of Wight County, Poquoson City, Norfolk, York County, and Suffolk Public Schools) converged at the National Institute of Aerospace (NIA) in Hampton, VA for a professional development workshop led by experts from NASA Langley Research Center and the NASA Science Activation program’s NIA-led NASA eClips team. Developed in collaboration with another NASA Science Activation team, GLOBE (Global Learning and Observations to Benefit the Environment) Mission Earth, and with support from the Coastal Virginia STEM Hub (COVA STEM) – a “STEM learning ecosystem targeting pre-K to adult residents in Coastal Virginia” – this two-day training, also provided comprehensive resources, including lesson plans, pacing guides, classroom activities, and books, all designed for integration into Hampton Roads classrooms.

The NASA Langley team led workshop participants through a training about GLOBE, a program dedicated to advancing Earth System science through data collected by volunteer members of the public, also known as ‘citizen scientists’. GLOBE invites educators, students, and members of the public worldwide (regardless of citizenship) to collect and submit cloud, surface temperature, and land cover observations using the GLOBE Observer app – a real-time data collection tool available right on their smartphones. These observations are then used to help address scientific questions at local, regional, and global scales. Through this training, the educators participated in K-20 classroom-friendly sample lessons, hands-on activities, and exploring the GLOBE Observer app, ultimately qualifying them as GLOBE Certified Educators. Earth System science lessons, activities, and information on how to download the GLOBE Observer citizen science app are available on the GLOBE website. Similarly, NASA eClips, which focuses on increasing STEM literacy in K-12 students, provided educators with free, valuable, standards-based classroom resources such as educator guides, informational videos, engineering design packets, and hands-on activities, which are available to educators and students alike on the NASA eClips’ website. Throughout the training, educators collaborated in grade-level groups, brainstorming new ways to integrate these standards-based NASA science resources.

One educator envisioned incorporating GLOBE’s cloud resources and supportive NASA eClips videos into her energy budget unit. Others explored modifying a heat-lamp experiment to include humidity and heat capacity. One teacher enthusiastically noted in response to a GLOBE urban heat island lesson plan, “The hands-on elements are going to be really great deliverables!” The creative energy and passion for education were palpable.

The dedication of both NIA and NASA Langley to education and local community support was evident. This professional learning experience offered educators immediately-applicable classroom activities and fostered connections among NASA science, NASA eClips, the GLOBE Program, and fellow educators across district lines. One educator highlighted the value of these networking opportunities, stating, “I do love that we’re able to collaborate with our colleagues so we can plan for our future units during the school year”. Another participant commented, “This is a great program…I am going to start embedding [this] in our curriculum.”

GME (supported by NASA under cooperative agreement award number NNX16AC54A) and NASA eClips (supported by NASA under cooperative agreement award number NNX16AB91A) are part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn

Approximately 25 people sitting at long tables raise their arms up in the air with their fingers tips spread out, waving arms from side to side.
GLOBE educator Marilé Colón Robles demonstrates a kinesthetic activity.

Share

Details

Last Updated
Aug 04, 2025
Editor
NASA Science Editorial Team
Location
NASA Langley Research Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      From left, NASA’s SpaceX Crew-10 members Kirill Peskov of Roscosmos, NASA astronauts Nichole Ayers and Anne McClain, and JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi share a light moment during a group portrait inside the International Space Station’s Kibo laboratory module.Credit: NASA NASA and SpaceX are targeting no earlier than 12:05 p.m. EDT, Thursday, Aug. 7, for the undocking of the agency’s SpaceX Crew-10 mission from the International Space Station. Pending weather conditions, splashdown is targeted at 11:58 a.m., Friday, Aug. 8. Crew-10 will be the first mission to splash down off the California coast for NASA’s Commercial Crew Program.
      NASA astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov are completing a five-month science expedition aboard the orbiting laboratory and will return time-sensitive research to Earth.
      Mission managers continue monitoring weather conditions in the area, as undocking of the SpaceX Dragon depends on spacecraft readiness, recovery team readiness, weather, sea states, and other factors. NASA and SpaceX will select a specific splashdown time and location closer to the Crew-10 spacecraft undocking.
      NASA’s live coverage of return and related activities will stream on NASA+, Amazon Prime, and more. Learn how to stream NASA content through a variety of platforms.
      NASA’s coverage is as follows (all times Eastern and subject to changed based on real-time operations):
      Thursday, Aug. 7
      9:45 a.m. – Hatch closure coverage begins on NASA+ and Amazon Prime.
      10:20 a.m. – Hatch closing
      11:45 a.m. – Undocking coverage begins on NASA+ and Amazon Prime.
      12:05 p.m. – Undocking
      Following the conclusion of undocking coverage, NASA will distribute audio-only discussions between Crew-10, the space station, and flight controllers during Dragon’s transit away from the orbital complex.
      Friday, Aug. 8
      10:45 a.m. – Return coverage begins on NASA+ and Amazon Prime.
      11:08 a.m. – Deorbit burn
      11:58 a.m. – Splashdown
      1:30 p.m. – Return to Earth media teleconference will stream live on the agency’s YouTube channel, with the following participants:
      Steve Stich, manager, NASA’s Commercial Crew Program Dina Contella, deputy manager, NASA’s International Space Station Program Sarah Walker, director, Dragon Mission Management, SpaceX Kazuyoshi Kawasaki, associate director general, Space Exploration Center/Space Exploration Innovation Hub Center, JAXA To participate in the teleconference, media must contact the NASA Johnson newsroom by 5 p.m., Aug. 7, at: jsccommu@mail.nasa.gov or 281-483-5111. To ask questions, media must dial in no later than 10 minutes before the start of the call. The agency’s media credentialing policy is available online.
      Find full mission coverage, NASA’s commercial crew blog, and more information about the Crew-10 mission at:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Steve Siceloff / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Share
      Details
      Last Updated Aug 06, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Commercial Crew Humans in Space ISS Research Johnson Space Center Kennedy Space Center View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Ocean currents swirl around North America (center left) and Greenland (upper right) in this data visualization created using NASA’s ECCO model. Advanced computing is helping oceanographers decipher hot spots of phytoplankton growth.NASA’s Scientific Visualization Studio As Greenland’s ice retreats, it’s fueling tiny ocean organisms. To test why, scientists turned to a computer model out of JPL and MIT that’s been called a laboratory in itself.
      Runoff from Greenland’s ice sheet is kicking nutrients up from the ocean depths and boosting phytoplankton growth, a new NASA-supported study has found. Reporting in Nature Communications: Earth & Environment, the scientists used state-of-the art-computing to simulate marine life and physics colliding in one turbulent fjord. Oceanographers are keen to understand what drives the tiny plantlike organisms, which take up carbon dioxide and power the world’s fisheries.
      Greenland’s mile-thick ice sheet is shedding some 293 billion tons (266 billion metric tons) of ice per year. During peak summer melt, more than 300,000 gallons (1,200 cubic meters) of fresh water drain into the sea every second from beneath Jakobshavn Glacier, also known as Sermeq Kujalleq,the most active glacier on the ice sheet. The waters meet and tumble hundreds of feet below the surface.
      Teal-colored phytoplankton bloom off the Greenland coast in this satellite image captured in June 2024 by NASA’s PACE (Plankton, Aerosol, Cloud, ocean Ecosystem) mission.NASA The meltwater plume is fresh and more buoyant than the surrounding saltwater. As it rises, scientists have hypothesized, it may be delivering nutrients like iron and nitrate — a key ingredient in fertilizer — to phytoplankton floating at the surface.
      Researchers track these microscopic organisms because, though smaller by far than a pinhead, they’re titans of the ocean food web. Inhabiting every ocean from the tropics to the polar regions, they nourish krill and other grazers that, in turn, support larger animals, including fish and whales.
      Previous work using NASA satellite data found that the rate of phytoplankton growth in Arctic waters surged 57% between 1998 and 2018 alone. An infusion of nitrate from the depths would be especially pivotal to Greenland’s phytoplankton in summer, after most nutrients been consumed by prior spring blooms. But the hypothesis has been hard to test along the coast, where the remote terrain and icebergs as big as city blocks complicate long-term observations.
      “We were faced with this classic problem of trying to understand a system that is so remote and buried beneath ice,” said Dustin Carroll, an oceanographer at San José State University who is also affiliated with NASA’s Jet Propulsion Laboratory in Southern California. “We needed a gem of a computer model to help.”
      Sea of Data
      To re-create what was happening in the waters around Greenland’s most active glacier, the team harnessed a model of the ocean developed at JPL and the Massachusetts Institute of Technology in Cambridge. The model ingests nearly all available ocean measurements collected by sea- and satellite-based instruments over the past three decades. That amounts to billions of data points, from water temperature and salinity to pressure at the seafloor. The model is called Estimating the Circulation and Climate of the Ocean-Darwin (ECCO-Darwin for short).
      Simulating “biology, chemistry, and physics coming together” in even one pocket along Greenland’s 27,000 miles (43,000 kilometers) of coastline is a massive math problem, noted lead author Michael Wood, a computational oceanographer at San José State University. To break it down, he said the team built a “model within a model within a model” to zoom in on the details of the fjord at the foot of the glacier.
      Using supercomputers at NASA’s Ames Research Center in Silicon Valley, they calculated that deepwater nutrients buoyed upward by glacial runoff would be sufficient to boost summertime phytoplankton growth by 15 to 40% in the study area.
      More Changes in Store
      Could increased phytoplankton be a boon for Greenland’s marine animals and fisheries? Carroll said that untangling impacts to the ecosystem will take time. Melt on the Greenland ice sheet is projected to accelerate in coming decades, affecting everything from sea level and land vegetation to the saltiness of coastal waters.
      “We reconstructed what’s happening in one key system, but there’s more than 250 such glaciers around Greenland,” Carroll said. He noted that the team plans to extend their simulations to the whole Greenland coast and beyond.
      Some changes appear to be impacting the carbon cycle both positively and negatively: The team calculated how runoff from the glacier alters the temperature and chemistry of seawater in the fjord, making it less able to dissolve carbon dioxide. That loss is canceled out, however, by the bigger blooms of phytoplankton taking up more carbon dioxide from the air as they photosynthesize.
      Wood added: “We didn’t build these tools for one specific application. Our approach is applicable to any region, from the Texas Gulf to Alaska. Like a Swiss Army knife, we can apply it to lots of different scenarios.”
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-379-6874 / 818-354-0307
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov 
      Written by Sally Younger
      2025-101
      Share
      Details
      Last Updated Aug 06, 2025 Related Terms
      Earth Carbon Cycle Earth Science Ice & Glaciers Jet Propulsion Laboratory Oceans PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Water on Earth Explore More
      4 min read NASA’s Perseverance Rover Captures Mars Vista As Clear As Day
      Article 16 minutes ago 1 min read NASA’s Black Marble: Stories from the Night Sky
      Studying the glowing patterns of Earth’s surface helps us understand human activity, respond to disasters,…
      Article 2 days ago 4 min read STEM Educators Are Bringing Hands-On NASA Science into Virginia Classrooms
      Professional learning experiences are integral to the enhancement of classroom instruction. Teachers, at the forefront…
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Captured at a location called “Falbreen,” this enhanced-color mosaic features decep-tively blue skies and the 43rd rock abrasion (the white patch at center-left) of the NASA Perseverance rover’s mission at Mars. The 96 images stitched together to create this 360-degree view were acquired May 26, 2025.NASA/JPL-Caltech/ASU/MSSS In this natural-color version of the “Falbreen” panorama, colors have not been enhanced and the sky appears more reddish. Visible still is Perseverance’s 43rd rock abrasion (the white patch at center-left). The 96 images stitched together to create this 360-degree view were acquired May 26, 2025.NASA/JPL-Caltech/ASU/MSSS ‘Float rocks,’ sand ripples, and vast distances are among the sights to see in the latest high-resolution panorama by the six-wheeled scientist.
      The imaging team of NASA’s Perseverance Mars rover took advantage of clear skies on the Red Planet to capture one of the sharpest panoramas of its mission so far. Visible in the mosaic, which was stitched together from 96 images taken at a location the science team calls “Falbreen,” are a rock that appears to lie on top of a sand ripple, a boundary line between two geologic units, and hills as distant as 40 miles (65 kilometers) away. The enhanced-color version shows the Martian sky to be remarkably clear and deceptively blue, while in the natural-color version, it’s reddish.
      “Our bold push for human space exploration will send astronauts back to the Moon,” said Sean Duffy, acting NASA administrator. “Stunning vistas like that of Falbreen, captured by our Perseverance rover, are just a glimpse of what we’ll soon witness with our own eyes. NASA’s groundbreaking missions, starting with Artemis, will propel our unstoppable journey to take human space exploration to the Martian surface. NASA is continuing to get bolder and stronger.”
      The rover’s Mastcam-Z instrument captured the images on May 26, 2025, the 1,516th Martian day, or sol, of Perseverance’s mission, which began in February 2021 on the floor of Jezero Crater. Perseverance reached the top of the crater rim late last year.
      “The relatively dust-free skies provide a clear view of the surrounding terrain,” said Jim Bell, Mastcam-Z’s principal investigator at Arizona State University in Tempe. “And in this particular mosaic, we have enhanced the color contrast, which accentuates the differences in the terrain and sky.”
      Buoyant Boulder
      One detail that caught the science team’s attention is a large rock that appears to sit atop a dark, crescent-shaped sand ripple to the right of the mosaic’s center, about 14 feet (4.4 meters) from the rover. Geologists call this type of rock a “float rock” because it was more than likely formed someplace else and transported to its current location. Whether this one arrived by a landslide, water, or wind is unknown, but the science team suspects it got here before the sand ripple formed.
      The bright white circle just left of center and near the bottom of the image is an abrasion patch. This is the 43rd rock Perseverance has abraded since it landed on Mars. Two inches (5 centimeters) wide, the shallow patch is made with the rover’s drill and enables the science team to see what’s beneath the weathered, dusty surface of a rock before deciding to drill a core sample that would be stored in one of the mission’s titanium sample tubes.
      The rover made this abrasion on May 22 and performed proximity science (a detailed analysis of Martian rocks and soil) with its arm-mounted instruments two days later. The science team wanted to learn about Falbreen because it’s situated within what may be some of the oldest terrain Perseverance has ever explored — perhaps even older than Jezero Crater.
      Tracks from the rover’s journey to the location can be seen toward the mosaic’s right edge. About 300 feet (90 meters) away, they veer to the left, disappearing from sight at a previous geologic stop the science team calls “Kenmore.”
      A little more than halfway up the mosaic, sweeping from one edge to the other, is the transition from lighter-toned to darker-toned rocks. This is the boundary line, or contact, between two geologic units. The flat, lighter-colored rocks nearer to the rover are rich in the mineral olivine, while the darker rocks farther away are believed to be much older clay-bearing rocks.
      More About Perseverance
      NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover on behalf of NASA’s Science Mission Directorate in Washington, as part of NASA’s Mars Exploration Program portfolio. Arizona State University leads the operations of the Mastcam-Z instrument, working in collaboration with Malin Space Science Systems in San Diego, on the design, fabrication, testing, and operation of the cameras.
      For more about Perseverance:
      https://science.nasa.gov/mission/mars-2020-perseverance
      News Media Contacts
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2025-100
      Explore More
      4 min read NASA Supercomputers Take on Life Near Greenland’s Most Active Glacier
      Article 10 minutes ago 5 min read NASA’s Lunar Trailblazer Moon Mission Ends
      Article 2 days ago 5 min read Marking 13 Years on Mars, NASA’s Curiosity Picks Up New Skills
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA Astronaut Barry “Butch” WilmoreNASA/Aubrey Gemignani
      After 25 years at NASA, flying in four different spacecraft, accumulating 464 days in space, astronaut and test pilot Butch Wilmore has retired from NASA.
      The Tennessee native earned a bachelor’s and a master’s degree in electrical engineering from Tennessee Technological University and a master’s degree in aviation systems from the University of Tennessee.
      Wilmoreis a decorated U.S. Navy captain who has flown numerous tactical aircraft operationally while deploying aboard four aircraft carriers during peacetime and combat operations. A graduate of the U.S. Naval Test Pilot School, he went on to serve as a test pilot before NASA selected him to become an astronaut in 2000.
      “Butch’s commitment to NASA’s mission and dedication to human space exploration is truly exemplary,” said Steve Koerner, acting director of NASA’s Johnson Space Center in Houston. “His lasting legacy of fortitude will continue to impact and inspire the Johnson workforce, future explorers, and the nation for generations. On behalf of NASA’s Johnson Space Center, we thank Butch for his service.”
      During his time at NASA, Wilmore completed three missions launching aboard the space shuttle Atlantis, Roscosmos Soyuz, and Boeing Starliner to the International Space Station. Wilmore also returned to Earth aboard a SpaceX Dragon spacecraft. Additionally, he conducted five spacewalks, totaling 32 hours outside the orbital laboratory.  
      “Throughout his career, Butch has exemplified the technical excellence of what is required of an astronaut. His mastery of complex systems, coupled with his adaptability and steadfast commitment to NASA’s mission, has inspired us all,” said Joe Acaba, chief of the Astronaut Office at NASA Johnson. “As he steps into this new chapter, that same dedication will no doubt continue to show in whatever he decides to do next.”
      Most recently, Wilmore launched aboard Boeing’s Starliner spacecraft on June 5, 2024, for its first crewed flight test mission, arriving at the space station the following day. While aboard the station, Wilmore completed numerous tasks, including a spacewalk to help remove a radio frequency group antenna assembly from the station’s truss and collected samples and surface material for analysis from the Destiny laboratory and the Quest airlock.
      “From my earliest days, I have been captivated by the marvels of creation, looking upward with an insatiable curiosity. This curiosity propelled me into the skies, and eventually to space, where the magnificence of the cosmos mirrored the glory of its creator in ways words can scarcely convey,” said Wilmore. “Even as I ventured beyond Earth’s limits, I remained attuned to the beauty and significance of the world below, recognizing the same intricate design evident among the stars is also woven into the fabric of life at home.”
      Learn more about how NASA explores the unknown and innovates for the benefit of humanity at:
      https://www.nasa.gov/
      Courtney Beasley
      Johnson Space Center, Houston
      281-910-4989
      courtney.m.beasley@nasa.gov

      View the full article
    • By NASA
      Nathan Jermyn frequented NASA Stennis on field trips when he was younger. Now, he works as an attorney-advisor supporting NASA Stennis and the NASA Shared Services Center. NASA/Danny Nowlin Before Nathan Jermyn could dig into the legal frameworks at NASA, he had to answer a different call.
      Jermyn participated in a one-day orientation in the summer of 2023 to begin work as an attorney-advisor supporting NASA’s Stennis Space Center and the NASA Shared Services Center near Bay St. Louis, Mississippi.
      However, the Biloxi, Mississippi, native shipped out just a week later with the Mississippi Army National Guard to provide military legal counsel for nearly six months in support of Operation Spartan Shield and Operation Inherent Resolve.
      The decorated military veteran returned to NASA in January 2024 to fully immerse himself as a member of the contract and procurement practice group for the NASA Office of the General Counsel.
      “Even though I have been working here for two years, sometimes it does not feel real,” Jermyn said.
      As a member of the contract and procurement law team, Jermyn assists with contract- and procurement-related topics for NASA Stennis and the NASA Shared Services Center to ensure taxpayer funds are used responsibly.
      He also is a member of NASA’s Freedom of Information Act (FOIA) team and provides legal reviews and advice for FOIA requests as the agency creates a cohesive and effective knowledge-sharing environment.
      The most interesting thing about his work is seeing how the big picture comes together, how each small detail and decision adds up to something more meaningful.  
      “Our office is a small piece, and it is amazing to see how our efforts intertwine with NASA Stennis and the NASA Shared Services Center operations and NASA,” he said. “It is also amazing the lengths everyone will go to help each other accomplish the mission.”
      Before joining NASA, Jermyn graduated from The University of Southern Mississippi with a bachelor’s degree in business administration and a law degree from Mississippi College School of Law.
      The Gulfport, Mississippi, resident initially practiced criminal law. Jermyn credits the team he works with at NASA for helping him navigate the complexities of government contract law.
      “Having a team that supports you and teaches you every day really expedites the learning process,” he said. “Our team puts a heavy emphasis on learning, development, and teamwork.”
      Jermyn is most excited to see how NASA continues to explore the universe moving forward, which includes the Artemis campaign of exploring the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars. Artemis II is scheduled for 2026.
      “I wholeheartedly believe humanity is destined for the stars and NASA is in prime position to lead that charge,” he said.
      Learn More About Careers at NASA Stennis Explore More
      6 min read A Defining Era: NASA Stennis and Space Shuttle Main Engine Testing
      Article 3 months ago 4 min read NASA Stennis Releases First Open-Source Software
      Article 3 months ago 5 min read NASA Stennis Software is Built for Future Growth
      Article 3 months ago View the full article
  • Check out these Videos

×
×
  • Create New...