Members Can Post Anonymously On This Site
NASA’s Artemis Crew Trains in Moonbound Orion Ahead of Mission
-
Similar Topics
-
By NASA
With one of its solar arrays deployed, NASA’s Lunar Trailblazer sits in a clean room at Lockheed Martin Space in Colorado during testing in August 2024. The mission was to investigate the nature of the Moon’s water, but controllers lost contact with the spacecraft a day after launch in February 2025.Lockheed Martin Space The small satellite was to map lunar water, but operators lost contact with the spacecraft the day after launch and were unable to recover the mission.
NASA’s Lunar Trailblazer ended its mission to the Moon on July 31. Despite extensive efforts, mission operators were unable to establish two-way communications after losing contact with the spacecraft the day following its Feb. 26 launch.
The mission aimed to produce high-resolution maps of water on the Moon’s surface and determine what form the water is in, how much is there, and how it changes over time. The maps would have supported future robotic and human exploration of the Moon as well as commercial interests while also contributing to the understanding of water cycles on airless bodies throughout the solar system.
Lunar Trailblazer shared a ride on the second Intuitive Machines robotic lunar lander mission, IM-2, which lifted off at 7:16 p.m. EST on Feb. 26 aboard a SpaceX Falcon 9 rocket from the agency’s Kennedy Space Center in Florida. The small satellite separated as planned from the rocket about 48 minutes after launch to begin its flight to the Moon. Mission operators at Caltech’s IPAC in Pasadena established communications with the small spacecraft at 8:13 p.m. EST. Contact was lost the next day.
Without two-way communications, the team was unable to fully diagnose the spacecraft or perform the thruster operations needed to keep Lunar Trailblazer on its flight path.
“At NASA, we undertake high-risk, high-reward missions like Lunar Trailblazer to find revolutionary ways of doing new science,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “While it was not the outcome we had hoped for, mission experiences like Lunar Trailblazer help us to learn and reduce the risk for future, low-cost small satellites to do innovative science as we prepare for a sustained human presence on the Moon. Thank you to the Lunar Trailblazer team for their dedication in working on and learning from this mission through to the end.”
The limited data the mission team had received from Lunar Trailblazer indicated that the spacecraft’s solar arrays were not properly oriented toward the Sun, which caused its batteries to become depleted.
For several months, collaborating organizations around the world — many of which volunteered their assistance — listened for the spacecraft’s radio signal and tracked its position. Ground radar and optical observations indicated that Lunar Trailblazer was in a slow spin as it headed farther into deep space.
“As Lunar Trailblazer drifted far beyond the Moon, our models showed that the solar panels might receive more sunlight, perhaps charging the spacecraft’s batteries to a point it could turn on its radio,” said Andrew Klesh, Lunar Trailblazer’s project systems engineer at NASA’s Jet Propulsion Laboratory in Southern California. “The global community’s support helped us better understand the spacecraft’s spin, pointing, and trajectory. In space exploration, collaboration is critical — this gave us the best chance to try to regain contact.”
However, as time passed, Lunar Trailblazer became too distant to recover as its telecommunications signals would have been too weak for the mission to receive telemetry and to command.
Technological Legacy
The small satellite’s High-resolution Volatiles and Minerals Moon Mapper (HVM3) imaging spectrometer was built by JPL to detect and map the locations of water and minerals. The mission’s Lunar Thermal Mapper (LTM) instrument was built by the University of Oxford in the United Kingdom and funded by the UK Space Agency to gather temperature data and determine the composition of silicate rocks and soils to improve understanding of why water content varies over time.
“We’re immensely disappointed that our spacecraft didn’t get to the Moon, but the two science instruments we developed, like the teams we brought together, are world class,” said Bethany Ehlmann, the mission’s principal investigator at Caltech. “This collective knowledge and the technology developed will cross-pollinate to other projects as the planetary science community continues work to better understand the Moon’s water.”
Some of that technology will live on in the JPL-built Ultra Compact Imaging Spectrometer for the Moon (UCIS-Moon) instrument that NASA recently selected for a future orbital flight opportunity. The instrument, which has has an identical spectrometer design as HVM3, will provide the Moon’s highest spatial resolution data of surface lunar water and minerals.
More About Lunar Trailblazer
Lunar Trailblazer was selected by NASA’s SIMPLEx (Small Innovative Missions for Planetary Exploration) competition, which provides opportunities for low-cost science spacecraft to ride-share with selected primary missions. To maintain the lower overall cost, SIMPLEx missions have a higher risk posture and less-stringent requirements for oversight and management. This higher risk acceptance bolsters NASA’s portfolio of targeted science missions designed to test pioneering mission approaches.
Caltech, which manages JPL for NASA, led Lunar Trailblazer’s science investigation, and Caltech’s IPAC led mission operations, which included planning, scheduling, and sequencing of all spacecraft activities. Along with managing Lunar Trailblazer, NASA JPL provided system engineering, mission assurance, the HVM3 instrument, and mission design and navigation. Lockheed Martin Space provided the spacecraft, integrated the flight system, and supported operations under contract with Caltech. The University of Oxford developed and provided the LTM instrument, funded by the UK Space Agency. Lunar Trailblazer, a project of NASA’s Lunar Discovery and Exploration Program, was managed by NASA’s Planetary Missions Program Office at Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington.
News Media Contacts
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Ian J. O’Neill
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-2649
ian.j.oneill@jpl.nasa.gov
Isabel Swafford
Caltech IPAC
626-216-4257
iswafford@ipac.caltech.edu
2025-099
Explore More
5 min read NASA’s Europa Clipper Radar Instrument Proves Itself at Mars
Article 3 days ago 6 min read How Joint NASA-ESA Sea Level Mission Will Help Hurricane Forecasts
Article 3 days ago 5 min read How NASA Is Testing AI to Make Earth-Observing Satellites Smarter
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By Space Force
Set to take place Dec. 8-9 at Patrick SFB, the third annual Guardian Arena will bring together 35 elite three-person teams from Space Force units across the country.
View the full article
-
By NASA
The Crew Health and Performance Exploration Analog (CHAPEA) team hosts a media day at NASA’s Johnson Space Center in Houston in 2023.Credit: NASA As NASA prepares for its second year-long Mars simulated mission, media are invited to visit the ground-based habitat where the mission will take place, on Friday, Aug. 22, at the agency’s Johnson Space Center in Houston.
Scheduled to begin in October, four volunteer crew members will enter the agency’s Crew Health and Performance Exploration Analog (CHAPEA) 3D-printed habitat to live and work for a year to inform NASA’s preparations for human Mars missions.
The in-person media event includes an opportunity to speak with subject matter experts, and capture b-roll and photos inside the habitat. Crew members will not be available for interviews as they will arrive at NASA Johnson at a later date.
International media wishing to attend must request accreditation no later than 6 p.m. EDT (5 p.m. CDT), on Monday, Aug. 11. United States-based media have a deadline of 6 p.m. EDT (5 p.m. CDT), on Wednesday, Aug. 20, to register.
To request accreditation, media must contact the NASA Johnson newsroom at: 281-483-5111 or jsccommu@mail.nasa.gov. Space is limited. A copy of NASA’s media accreditation policy is available online.
Once the crew members kick off their mission, they will carry out various activities, including simulated Mars walks, robotic operations, habitat maintenance, medical technology tests, exercise, and crop growth. The crew also will face environmental stresses such as resource limitations, isolation, communication delays, and equipment failure, and work through these scenarios with the resources available inside the habitat.
To learn more about CHAPEA, visit:
https://www.nasa.gov/humans-in-space/chapea
-end-
Lauren Low
Headquarters, Washington
202-358-1600
lauren.e.low@nasa.gov
Kelsey Spivey / Mohi Kumar
Johnson Space Center, Houston
281-483-5111
kelsey.m.spivey@nasa.gov / mohi.kumar@nasa.gov
Share
Details
Last Updated Aug 04, 2025 LocationNASA Headquarters Related Terms
Crew Health and Performance Exploration Analog (CHAPEA) Humans in Space Johnson Space Center View the full article
-
By NASA
Before astronauts venture around the Moon on Artemis II, the agency’s first crewed mission to the Moon since Apollo, Mark Cavanaugh is helping make sure the Orion spacecraft is safe and space-ready for the journey ahead.
As an Orion integration lead at NASA’s Johnson Space Center in Houston, he ensures the spacecraft’s critical systems— in both the U.S.-built crew module and European-built service module—come together safely and seamlessly.
Mark Cavanaugh stands in front of a mockup of the Orion spacecraft inside the Space Vehicle Mockup Facility at NASA’s Johnson Space Center in Houston.NASA/Robert Markowitz With nearly a decade of experience at NASA, Cavanaugh currently works within the Orion Crew and Service Module Office at Johnson. He oversees the technical integration of the European Service Module, which provides power, propulsion, and life support to Orion during Artemis missions to the Moon. His work includes aligning and verifying essential systems to keeping the crew alive, including oxygen, nitrogen, water storage, temperature regulation, and spacecraft structures.
In addition to his integration work, Cavanaugh is an Orion Mission Evaluation Room (MER) manager. The MER is the engineering nerve center during Artemis flights, responsible for real-time monitoring of the Orion spacecraft and real-time decision-making. From prelaunch to splashdown, Cavanaugh will lead a team of engineers who track vehicle health and status, troubleshoot anomalies, and communicate directly with the flight director to ensure the mission remains safe and on track.
Mark Cavanaugh supports an Artemis I launch attempt from the Passive Thermal Control System console on Aug. 29, 2022, in the Orion Mission Evaluation Room at NASA’s Johnson Space Center.NASA/Josh Valcarcel Cavanaugh’s passion for space exploration began early. “I’ve wanted to be an aerospace engineer since I was six years old,” he said. “My uncle, who is also an aerospace engineer, used to take me to wind tunnel tests and flight museums as a kid.”
That passion only deepened after a fifth-grade trip from Philadelphia to Houston with his grandfather. “My dream of working at NASA Johnson started when I visited the center for the first time,” he said. “Going from being a fifth grader riding the tram on the tour to contributing to the great work done at Johnson has been truly incredible.”
Turning that childhood dream into reality did not come with a straight path. Cavanaugh graduated from Pennsylvania State University in 2011, the same year NASA’s Space Shuttle Program ended. With jobs in the space industry in short supply, he took a position with Boeing in Houston, working on the International Space Station’s Passive Thermal Control System. He later supported thermal teams for the Artemis Moon rocket called the Space Launch System, and the Starliner spacecraft that flew astronauts Butch Wilmore and Suni Williams during their Boeing Crew Flight Test mission, before a mentor flagged a NASA job posting that turned out to be the perfect fit.
He joined NASA as the deputy system manager for Orion’s Passive Thermal Control System, eventually stepping into his current leadership role on the broader Orion integration team. “I’ve been very lucky to work with some of the best and most supportive teammates you can imagine,” he said.
Mark Cavanaugh with his mother, Jennifer, in front of the Artemis I Orion spacecraft following the thermal vacuum test at the Space Environments Complex at NASA’s Neil Armstrong Test Facility in Sandusky, Ohio. Cavanaugh says collaboration and empathy were key to solving challenges along the way. “I’ve learned to look at things from the other person’s perspective,” he said. “We’re all working toward the same incredible goal, even if we don’t always agree. That mindset helps keep things constructive and prevents misunderstandings.”
He also emphasizes the importance of creative problem-solving. “For me, overcoming technical challenges comes down to seeking different perspectives, questioning assumptions, and not being afraid to try something new—even if it sounds a little ridiculous at first.”
Mark Cavanaugh riding his motorcycle on the Circuit of the Americas track in Austin, Texas. Outside of work, Cavanaugh fuels his love of speed and precision by riding one of his three motorcycles. He has even taken laps at the Circuit of the Americas track in Austin, Texas.
When he is not on the track or in the control room, Cavanaugh gives back through student outreach. “The thing I always stress when I talk to students is that nothing is impossible,” he said. “I never thought I’d get to work in the space industry, let alone at NASA. But I stayed open to opportunities—even the ones that didn’t match what I originally imagined for myself.”
Explore More
5 min read Chief Training Officer Teresa Sindelar Touches the Future of Human Spaceflight
Article 3 weeks ago 3 min read Aaisha Ali: From Marine Biology to the Artemis Control Room
Article 4 weeks ago 2 min read I Am Artemis: Joe Pavicic
Article 4 weeks ago View the full article
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.