Members Can Post Anonymously On This Site
NASA-ISRO Satellite Lifts Off to Track Earth’s Changing Surfaces
-
Similar Topics
-
By European Space Agency
The journey to launch is picking up pace for Europe’s MetOp Second Generation weather satellite – which hosts the Copernicus Sentinel-5 as part of its instrument package. Specialists at Europe’s Spaceport in Kourou have completed the critical and hazardous task of fuelling the satellite, marking a major milestone in its final preparations for liftoff.
View the full article
-
By NASA
A collaboration between NASA and the Indian Space Research Organisation, NISAR will use synthetic aperture radar to monitor nearly all the planet’s land- and ice-covered surfaces twice every 12 days.Credit: NASA/JPL-Caltech NASA will provide live coverage of launch activities for NISAR (NASA-ISRO Synthetic Aperture Radar), which is set to lift off at 8:10 a.m. EDT (5:40 p.m. IST), Wednesday, July 30, from Satish Dhawan Space Centre on India’s southeastern coast.
A collaboration between NASA and the Indian Space Research Organisation (ISRO), the first-of-its-kind satellite will lift off aboard an ISRO Geosynchronous Satellite Launch Vehicle on a mission to scan nearly all the Earth’s land and ice surfaces twice every 12 days.
Watch live coverage of the launch on NASA+ and the agency’s YouTube channel. Learn how to watch NASA content through a variety of platforms, including social media.
With its two radar instruments — an S-band system provided by ISRO and an L-band system provided by NASA — the NISAR mission will provide high-resolution data to help decision-makers, communities, and scientists monitor major infrastructure, agricultural fields, and movement of land and ice surfaces.
Hailed as a critical part of a pioneering year for United States – India civil space cooperation by President Trump and Prime Minister Modi during their visit in Washington in February, the NISAR launch will advance U.S. – India cooperation and benefit the U.S. in areas such as agriculture and preparation and response to disasters like hurricanes, floods, and volcanic eruptions.
NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):
Monday, July 28
12 p.m. – Prelaunch teleconference with the following participants:
Karen St. Germain, director of Earth science, NASA Headquarters Gerald Bawden, NISAR program scientist, NASA Headquarters Shanna McClain, Disasters program manager, NASA Headquarters Phil Barela, NISAR project manager, NASA Jet Propulsion Laboratory (JPL) Marco Lavalle, NISAR deputy project scientist, NASA JPL The teleconference will stream on JPL’s YouTube Channel.
Members of the media may ask questions via phone during the teleconference. To register, media must provide their name and affiliation by 4 p.m. on Sunday, July 27, to Rexana Vizza at: rexana.v.vizza@jpl.nasa.gov. Questions may also be asked via social media with the hashtag #AskNISAR.
Wednesday, July 30
7 a.m. – Launch coverage begins on NASA+ and YouTube.
The launch broadcast begins from NASA’s Jet Propulsion Laboratory in Southern California, where the U.S. portion of the mission is managed.
Follow launch events on NASA’s NISAR blog.
Watch, Engage on Social Media
You can also stay connected by following and tagging these accounts:
X: @NASA, @NASAEarth, @NASAJPL
Facebook: NASA, NASA Earth, NASA JPL
Instagram: @NASA, @NASAEarth, @NASAJPL
Additional Resources
The NISAR press kit features deeper dives into the mission as well as its science and technology.
Explore NISAR videos as well as NISAR animations and b-roll media reel.
The NISAR mission is the first joint satellite mission between NASA and ISRO, marking a new chapter in the growing collaboration between the two space agencies. The launch of NISAR, years in the making, builds on a strong heritage of successful programs, including Chandrayaan-1 and the recent Axiom Mission-4, which saw ISRO and NASA astronauts living and working together aboard the International Space Station for the first time.
Learn more about the mission at:
https://science.nasa.gov/mission/nisar
-end-
Elizabeth Vlock / Karen Fox
Headquarters, Washington
202-358-1600
elizabeth.a.vlock@nasa.gov / karen.c.fox@nasa.gov
Andrew Wang / Jane J. Lee
Jet Propulsion Laboratory, Pasadena, Calif.
626-379-6874 / 818-354-0307
andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
Share
Details
Last Updated Jul 23, 2025 LocationNASA Headquarters Related Terms
NISAR (NASA-ISRO Synthetic Aperture Radar) Earth Science Division Jet Propulsion Laboratory Science Mission Directorate View the full article
-
By NASA
4 min read
NASA, JAXA XRISM Satellite X-rays Milky Way’s Sulfur
An international team of scientists have provided an unprecedented tally of elemental sulfur spread between the stars using data from the Japan-led XRISM (X-ray Imaging and Spectroscopy Mission) spacecraft.
Astronomers used X-rays from two binary star systems to detect sulfur in the interstellar medium, the gas and dust found in the space between stars. It’s the first direct measurement of both sulfur’s gas and solid phases, a unique capability of X-ray spectroscopy, XRISM’s (pronounced “crism”) primary method of studying the cosmos.
“Sulfur is important for how cells function in our bodies here on Earth, but we still have a lot of questions about where it’s found out in the universe,” said Lía Corrales, an assistant professor of astronomy at the University of Michigan in Ann Arbor. “Sulfur can easily change from a gas to a solid and back again. The XRISM spacecraft provides the resolution and sensitivity we need to find it in both forms and learn more about where it might be hiding.”
A paper about these results, led by Corrales, published June 27 in the Publications of the Astronomical Society of Japan.
Watch to learn how the XRISM (X-ray Imaging and Spectroscopy Mission) satellite took an unprecidented look at our galaxy’s sulfur. XRISM is led by JAXA (Japan Aerospace Exploration Agency) in collaboration with NASA, along with contributions from ESA (European Space Agency).
NASA’s Goddard Space Flight Center Using ultraviolet light, researchers have found gaseous sulfur in the space between stars. In denser parts of the interstellar medium, such as the molecular clouds where stars and planets are born, this form of sulfur quickly disappears.
Scientists assume the sulfur condenses into a solid, either by combining with ice or mixing with other elements.
When a doctor performs an X-ray here on Earth, they place the patient between an X-ray source and a detector. Bone and tissue absorb different amounts of the light as it travels through the patient’s body, creating contrast in the detector.
To study sulfur, Corrales and her team did something similar.
They picked a portion of the interstellar medium with the right density — not so thin that all the X-rays would pass through unchanged, but also not so dense that they would all be absorbed.
Then the team selected a bright X-ray source behind that section of the medium, a binary star system called GX 340+0 located over 35,000 light-years away in the southern constellation Scorpius.
This composite shows a section of the interstellar medium scientists X-rayed for sulfur using the Japan-led XRISM (X-ray Imaging and Spectroscopy Mission). X-ray binary GX 340+0 is the blue dot in the center. The composite contains a blend of imagery in X-rays (represented in deep blue), infrared, and optical light.DSS/DECaPS/eRosita/NASA’s Goddard Space Flight Center This composite shows a section of the interstellar medium scientists X-rayed for sulfur using the Japan-led XRISM (X-ray Imaging and Spectroscopy Mission). The X-ray binary 4U 1630–472 is highlighted at the center. The composite contains a blend of imagery in X-rays (represented in deep blue), infrared, and optical light.DSS/DECaPS/eRosita/NASA’s Goddard Space Flight Center Using the Resolve instrument on XRISM, the scientists were able to measure the energy of GX 340+0’s X-rays and determined that sulfur was present not only as a gas, but also as a solid, possibly mixed with iron.
“Chemistry in environments like the interstellar medium is very different from anything we can do on Earth, but we modeled sulfur combined with iron, and it seems to match what we’re seeing with XRISM,” said co-author Elisa Costantini, a senior astronomer at the Space Research Organization Netherlands and the University of Amsterdam. “Our lab has created models for different elements to compare with astronomical data for years. The campaign is ongoing, and soon we’ll have new sulfur measurements to compare with the XRISM data to learn even more.”
Iron-sulfur compounds are often found in meteorites, so scientists have long thought they might be one way sulfur solidifies out of molecular clouds to travel through the universe.
In their paper, Corrales and her team propose a few compounds that would match XRISM’s observations — pyrrhotite, troilite, and pyrite, which is sometimes called fool’s gold.
The researchers were also able to use measurements from a second X-ray binary called 4U 1630-472 that helped confirm their findings.
“NASA’s Chandra X-ray Observatory has previously studied sulfur, but XRISM’s measurements are the most detailed yet,” said Brian Williams, the XRISM project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Since GX 340+0 is on the other side of the galaxy from us, XRISM’s X-ray observations are a unique probe of sulfur in a large section of the Milky Way. There’s still so much to learn about the galaxy we call home.”
XRISM is led by JAXA (Japan Aerospace Exploration Agency) in collaboration with NASA, along with contributions from ESA (European Space Agency). NASA and JAXA developed Resolve, the mission’s microcalorimeter spectrometer.
Download images and videos through NASA’s Scientific Visualization Studio. By Jeanette Kazmierczak
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Alise Fisher
202-358-2546
alise.m.fisher@nasa.gov
NASA Headquarters, Washington
Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share
Details
Last Updated Jul 23, 2025 EditorJeanette Kazmierczak Related Terms
Goddard Space Flight Center Astrophysics Stars The Universe X-ray Astronomy X-ray Binaries XRISM (X-Ray Imaging and Spectroscopy Mission) View the full article
-
By European Space Agency
The next sea-level monitoring satellite, Copernicus Sentinel-6B, has begun its journey from Europe to the Vandenberg Space Force Base in California, where it is scheduled to launch in November. Carefully packed into a climate-controlled container, the satellite is currently crossing the Atlantic Ocean aboard the cargo ship Industrial Dolphin.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.