Members Can Post Anonymously On This Site
Radio JOVE Volunteers Tune In to the Sun’s Low Notes
-
Similar Topics
-
By Space Force
Air Force Reservists in space-related career fields interested in volunteering to join the U.S. Space Force as Guardians serving in a part-time capacity can apply.
View the full article
-
By NASA
2 Min Read NASA Seeks Volunteers to Track Artemis II Mission
On the 19th day of the Artemis I mission, Dec. 4, 2022, a camera mounted on the Orion spacecraft captured the Moon just in frame. Credits: NASA NASA seeks volunteers to passively track the Artemis II Orion spacecraft as the crewed mission travels to the Moon and back to Earth.
The Artemis II test flight, a launch of the agency’s SLS (Space Launch System) rocket and Orion spacecraft, will send NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, along with CSA (Canadian Space Agency) astronaut Jeremy Hansen, on an approximately 10-day mission around the Moon.
The mission, targeted for no later than April 2026, will rely on NASA’s Near Space Network and Deep Space Network for primary communications and tracking support throughout its launch, orbit, and reentry. However, with a growing focus on commercialization, NASA wants to further understand industry’s tracking capabilities.
This collaboration opportunity builds upon a previous request released by NASA’s SCaN (Space Communication and Navigation) Program during the Artemis I mission, where ten volunteers successfully tracked the uncrewed Orion spacecraft in 2022 on its journey thousands of miles beyond the Moon and back.
During the Artemis I mission, participants – ranging from international space agencies, academic institutions, commercial companies, nonprofits, and private citizens – attempted to receive Orion’s signal and use their respective ground antennas to track and measure changes in the radio waves transmitted by Orion.
This data will help inform our transition to a commercial-first approach, ultimately strengthening the infrastructure needed to support long-term Moon to Mars objectives.
Kevin Coggins
Deputy Associate Administrator for SCaN
“By offering this opportunity to the broader aerospace community, we can identify available tracking capabilities outside the government,” said Kevin Coggins, NASA’s deputy associate administrator for SCaN at NASA Headquarters in Washington. “This data will help inform our transition to a commercial-first approach, ultimately strengthening the infrastructure needed to support Artemis missions and our long-term Moon to Mars objectives.”
Read the opportunity announcement here: Responses are due by 5 p.m. EDT on Monday, Oct. 27.
NASA’s SCaN Program serves as the management office for the agency’s space communications and navigation systems. More than 100 NASA and non-NASA missions rely on SCaN’s two networks, the Near Space Network and the Deep Space Network, to support astronauts aboard the International Space Station and future Artemis missions, monitor Earth’s weather, support lunar exploration, and uncover the solar system and beyond.
Artemis II will help confirm the systems and hardware needed for human deep space exploration. This mission is the first crewed flight under NASA’s Artemis campaign and is another step toward new U.S.-crewed missions on the Moon’s surface that will help the agency prepare to send American astronauts to Mars.
Learn More about NASA SCaN Share
Details
Last Updated Aug 27, 2025 EditorGoddard Digital TeamContactJoshua A. Finchjoshua.a.finch@nasa.govLocationGoddard Space Flight Center Related Terms
Commercial Space Artemis Artemis 2 Communicating and Navigating with Missions Space Communications & Navigation Program Explore More
4 min read Volunteers Worldwide Successfully Tracked NASA’s Artemis I Mission
Article 2 years ago 2 min read Working in Tandem: NASA’s Networks Empower Artemis I
Article 3 years ago 3 min read NASA Seeks Commercial Near Space Network Services
NASA is seeking commercial communication and navigation service providers for the Near Space Network.
Article 2 years ago View the full article
-
By NASA
X-ray: NASA/CXC/Univ. of Hong Kong/S. Zhang et al.; Radio: ATNF/CSIRO/ATCA; H-alpha: UK STFC/Royal Observatory Edinburgh; Image Processing: NASA/CXC/SAO/N. Wolk In 2009, NASA’s Chandra X-ray Observatory released a captivating image: a pulsar and its surrounding nebula that is shaped like a hand.
Since then, astronomers have used Chandra and other telescopes to continue to observe this object. Now, new radio data from the Australia Telescope Compact Array (ATCA), has been combined with Chandra’s X-ray data to provide a fresh view of this exploded star and its environment, to help understand its peculiar properties and shape.
At the center of this new image lies the pulsar B1509-58, a rapidly spinning neutron star that is only about 12 miles in diameter. This tiny object is responsible for producing an intricate nebula (called MSH 15-52) that spans over 150 light-years, or about 900 trillion miles. The nebula, which is produced by energetic particles, resembles a human hand with a palm and extended fingers pointing to the upper right in X-rays.
Labeled Version of the ImageX-ray: NASA/CXC/Univ. of Hong Kong/S. Zhang et al.; Radio: ATNF/CSIRO/ATCA; H-alpha: UK STFC/Royal Observatory Edinburgh; Image Processing: NASA/CXC/SAO/N. Wolk The collapse of a massive star created the pulsar when much of the star crashed inward once it burned through its sustainable nuclear fuel. An ensuing explosion sent the star’s outer layers outward into space as a supernova.
The pulsar spins around almost seven times every second and has a strong magnetic field, about 15 trillion times stronger than the Earth’s. The rapid rotation and strong magnetic field make B1509-58 one of the most powerful electromagnetic generators in the Galaxy, enabling it to drive an energetic wind of electrons and other particles away from the pulsar, creating the nebula.
In this new composite image, the ATCA radio data (represented in red) has been combined with X-rays from Chandra (shown in blue, orange and yellow), along with an optical image of hydrogen gas (gold). The areas of overlap between the X-ray and radio data in MSH 15-52 show as purple. The optical image shows stars in the field of view along with parts of the supernova’s debris, the supernova remnant RCW 89. A labeled version of the figure shows the main features of the image.
Radio data from ATCA now reveals complex filaments that are aligned with the directions of the nebula’s magnetic field, shown by the short, straight, white lines in a supplementary image. These filaments could result from the collision of the pulsar’s particle wind with the supernova’s debris.
Complex Filaments Aligned with the Directions of the Nebula’s Magnetic FieldX-ray: NASA/CXC/Univ. of Hong Kong/S. Zhang et al.; Radio: ATNF/CSIRO/ATCA; H-alpha: UK STFC/Royal Observatory Edinburgh; Image Processing: NASA/CXC/SAO/N. Wolk By comparing the radio and X-ray data, researchers identified key differences between the sources of the two types of light. In particular, some prominent X-ray features, including the jet towards the bottom of the image and the inner parts of the three “fingers” towards the top, are not detected in radio waves. This suggests that highly energetic particles are leaking out from a shock wave — similar to a supersonic plane’s sonic boom — near the pulsar and moving along magnetic field lines to create the fingers.
The radio data also shows that RCW 89’s structure is different from typical young supernova remnants. Much of the radio emission is patchy and closely matches clumps of X-ray and optical emission. It also extends well beyond the X-ray emission. All of these characteristics support the idea that RCW 89 is colliding with a dense cloud of nearby hydrogen gas.
However, the researchers do not fully understand all that the data is showing them. One area that is perplexing is the sharp boundary of X-ray emission in the upper right of the image that seems to be the blast wave from the supernova — see the labeled feature. Supernova blast waves are usually bright in radio waves for young supernova remnants like RCW 89, so it is surprising to researchers that there is no radio signal at the X-ray boundary.
MSH 15–52 and RCW 89 show many unique features not found in other young sources. There are, however, still many open questions regarding the formation and evolution of these structures. Further work is needed to provide better understanding of the complex interplay between the pulsar wind and the supernova debris.
A paper describing this work, led by Shumeng Zhang of the University of Hong Kong, with co-authors Stephen C.Y. Ng of the University of Hong Kong and Niccolo’ Bucciantini of the Italian National Institute for Astrophysics, has been published in The Astrophysical Journal and is available at https://iopscience.iop.org/article/10.3847/1538-4357/adf333.
NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
Read more from NASA’s Chandra X-ray Observatory Learn more about the Chandra X-ray Observatory and its mission here:
https://www.nasa.gov/chandra
https://chandra.si.edu
Visual Description
This release features a composite image of a nebula and pulsar that strongly resembles a cosmic hand reaching for a neon red cloud.
The neon red cloud sits near the top of the image, just to our right of center. Breaks in the cloud reveal interwoven strands of gold resembling spiderwebs, or a latticework substructure. This cloud is the remains of the supernova that formed the pulsar at the heart of the image. The pulsar, a rapidly spinning neutron star only 12 miles in diameter, is far too small to be seen in this image, which represents a region of space over 150 light-years across.
The bottom half of the image is dominated by a massive blue hand reaching up toward the pulsar and supernova cloud. This is an intricate nebula called MSH 15-52, an energetic wind of electrons and other particles driven away from the pulsar. The resemblance to a hand is undeniable. Inside the nebula, streaks and swirls of blue range from pale to navy, evoking a medical X-ray, or the yearning hand of a giant, cosmic ghost.
The hand and nebula are set against the blackness of space, surrounded by scores of gleaming golden specks. At our lower left, a golden hydrogen gas cloud extends beyond the edges of the image. In this composite, gold represents optical data; red represents ATCA radio data; and blue, orange, and yellow represent X-ray data from Chandra. Where the blue hand of the nebula overlaps with the radio data in red, the fingers appear hazy and purple.
News Media Contact
Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
corinne.m.beckinger@nasa.gov
Share
Details
Last Updated Aug 20, 2025 EditorLee MohonContactCorinne M. Beckingercorinne.m.beckinger@nasa.gov Related Terms
Astrophysics Chandra X-Ray Observatory Marshall Astrophysics Marshall Space Flight Center Nebulae Pulsars The Universe Explore More
5 min read NASA, Army National Guard Partner on Flight Training for Moon Landing
Article 2 days ago 4 min read NASA Challenge Winners Cook Up New Industry Developments
Article 2 days ago 3 min read NASA Seeks Proposals for 2026 Human Exploration Rover Challenge
Article 5 days ago View the full article
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered AI and Hubble Science Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
Hubble Examines Low Brightness, High Interest Galaxy
This NASA/ESA Hubble Space Telescope image features a portion of the spiral galaxy NGC 45. ESA/Hubble & NASA, D. Calzetti, R. Chandar; Acknowledgment: M. H. Özsaraç This NASA/ESA Hubble Space Telescope image zooms in on the feathery spiral arms of the galaxy NGC 45, which lies just 22 million light-years away in the constellation Cetus (the Whale).
The portrait uses data drawn from two complementary observing programs. The first took a broad view of 50 nearby galaxies, leveraging Hubble’s ability to observe ultraviolet through visible into near-infrared light to study star formation in these galaxies. The second program examined many of the same nearby galaxies as the first, narrowing in on a particular wavelength of red light called H-alpha. Star-forming nebulae are powerful producers of H-alpha light, and several of these regions are visible across NGC 45 as bright pink-red patches.
These observing programs aimed to study star formation in galaxies of different sizes, structures, and degrees of isolation — and NGC 45 is a particularly interesting target. Though it may appear to be a regular spiral galaxy, NGC 45 is a remarkable type called a low surface brightness galaxy.
Low surface brightness galaxies are fainter than the night sky itself, making them incredibly difficult to detect. They appear unexpectedly faint because they have relatively few stars for the volume of gas and dark matter they carry. In the decades since astronomers serendipitously discovered the first low surface brightness galaxy in 1986, researchers have learned that 30–60% of all galaxies may fall into this category. Studying these hard-to-detect galaxies is key to understanding how galaxies form and evolve, and Hubble’s sensitive instruments are equal to the task.
Text Credit: ESA/Hubble
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Share
Details
Last Updated Aug 14, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Astrophysics Astrophysics Division Galaxies Galaxies, Stars, & Black Holes Hubble Space Telescope Spiral Galaxies Star-forming Nebulae Stars The Universe Keep Exploring Discover More Topics From Hubble
35 Years of Hubble Images
Hubble’s Night Sky Challenge
Hearing Hubble
3D Hubble Models
View the full article
-
By NASA
3 min read
NASA Citizen Science and Your Career: Stories of Exoplanet Watch Volunteers
Doing NASA Science brings many rewards. But can taking part in NASA citizen science help your career? To find out, we asked participants in NASA’s Exoplanet Watch project about their experiences. In this project, amateur astronomers work together with professionals to track planets around other stars.
First, we heard from professional software programmers. Right away, one of them told us about getting a new job through connections made in the project.
“I decided to create the exoplanet plugin, [for citizen science] since it was quite a lot of manual work to check which transits were available for your location. The exoplanet plugin and its users got me in contact with the Stellar group… Through this group, I got into contact with a company called OurSky and started working for them… the point is, I created a couple of plugins for free and eventually got a job at an awesome company.”
Another participant talked about honing their skills and growing their confidence through Exoplanet Watch.
“There were a few years when I wasn’t actively coding. However, Exoplanet Watch rekindled that spark…. Participating in Exoplanet Watch even gave me the confidence to prepare again for a technical interview at Meta—despite having been thoroughly defeated the first time I tried.”
Teachers and teaching faculty told us how Exoplanet Watch gives them the ability to better convey what scientific research is all about – and how the project motivates students!
“Exoplanet Watch makes it easy for undergraduate students to gain experience in data science and Python, which are absolutely necessary for graduate school and many industry jobs.”
“Experience with this collaborative work is a vital piece of the workforce development of our students who are seeking advanced STEM-related careers or ongoing education in STEM (Science, Technology, Engineering, & Mathematics) fields after graduation… Exoplanet Watch, in this way, is directly training NASA’s STEM workforce of tomorrow by allowing CUNY (The City University of New York) students to achieve the science goals that would otherwise be much more difficult without its resources.”
One aspiring academic shared how her participation on the science team side of the project has given her research and mentorship experience that strengthens her resume.
“I ended up joining the EpW team to contribute my expertise in stellar variability… My involvement with Exoplanet Watch has provided me with invaluable experience in mentoring a broad range of astronomy enthusiasts and working in a collaborative environment with people from around the world. … Being able to train others, interact in a team environment, and work independently are all critical skills in any work environment, but these specific experiences have also been incredibly valuable towards building my portfolio as I search for faculty positions around the USA.”
There are no guarantees, of course. What you get out of NASA citizen science depends on what you put in. But there is certainly magic to be found in the Exoplanet Watch project. As one student said:
“Help will always be found at Hogwarts, to those who need it.” Exoplanet Watch was definitely Hogwarts for me in my career as an astronomer!”
For more information about NASA and your career, check out NASA’s Surprisingly STEM series highlighting exciting and unexpected jobs at NASA, or come to NASA Career Day, a virtual event for students and educators. Participants must register by September 4, 2025. The interactive platform will be open from September 15-19, with live panels and events taking place on September 18.
Exoplanet Watch volunteer Bryan Martin
Credit: Bryan Martin
Share
Details
Last Updated Jul 16, 2025 Related Terms
Astrophysics Citizen Science Exoplanet Science Exoplanets Explore More
2 min read Hubble Snaps Galaxy Cluster’s Portrait
Article
5 days ago
8 min read NASA’s Webb Scratches Beyond Surface of Cat’s Paw for 3rd Anniversary
Article
6 days ago
2 min read Polar Tourists Give Positive Reviews to NASA Citizen Science in Antarctica
Article
1 week ago
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.