Members Can Post Anonymously On This Site
Feeling the Heat: Perseverance Looks for Evidence of Contact Metamorphism
-
Similar Topics
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
For general inquires:
Frank Hui Phone: (650) 604-5395 E-mail: frank.c.hui@nasa.gov
For questions regarding scheduling of arc jet tests:
Enrique Carballo Phone: (650) 604-0970 Email: enrique.carballo@nasa.gov
For questions regarding scheduling of ballistic range tests:
Charles Cornelison Phone: (650) 604-3443 Email: charles.j.cornelison@nasa.gov
For questions on the Ames Vertical Gun Range (AVGR), contact the AVGR Science Coordinator:
Alex Sehlke Phone: (650) 604-3651 Email: alexander.sehlke@nasa.gov
For questions on the Electric Arc Shock Tube (EAST):
Ramon Martinez Phone: (650) 604-3485 Email: ramon.martinez@nasa.gov
For questions regarding the Planetary Aeolian Laboratory:
Haley Cummings Phone: (650) 604-1633 Email: haley.cummings@nasa.gov SHIPPING ADDRESS
For tests in the AHF or TFD, the shipping address is
NASA Ames Research Center Building N234 Room 112 Moffett Field, CA 94035-0001 For tests in the PTF or IHF, the shipping address is
NASA Ames Research Center Building N238 Room 103 Moffett Field, CA 94035-0001 For tests in the HFFF, the shipping address is
NASA Ames Research Center Building N237 Room 150 Moffett Field, CA 94035-0001 For tests in the AVGR, the shipping address is
NASA Ames Research Center Building N204A Room 104 Moffett Field, CA 94035-0001 For tests in the EAST, the shipping address is
NASA Ames Research Center Building N229 Room 157 Moffett Field, CA 94035-0001 Or you can mail us at:
NASA Ames Research CenterThermophysics Facilities Branch Mail Stop 229-4 Moffett Field, CA 94035-1000
Learn More About The Branch View the full article
-
By NASA
NASA’s Perseverance Mars rover took this selfie on September 10, 2021, the 198th Martian day, or sol of its mission.Credit: NASA/JPL-Caltech NASA will host a news conference at 11 a.m. EDT Wednesday, to discuss the analysis of a rock sampled by the agency’s Perseverance Mars rover last year, which is the subject of a forthcoming science paper. The agency previously announced this event as a teleconference.
Watch the news conference on NASA’s YouTube channel and the agency’s website. Learn how to watch NASA content through a variety of platforms, including social media.
Participants include:
Acting NASA Administrator Sean Duffy NASA Associate Administrator Amit Kshatriya Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington Lindsay Hays, senior scientist for Mars Exploration, Planetary Science Division, NASA Headquarters Katie Stack Morgan, Perseverance project scientist, NASA’s Jet Propulsion Laboratory in Southern California Joel Hurowitz, planetary scientist, Stony Brook University, New York To ask questions by phone, members of the media must RSVP no later than one hour before the start of the event to: rexana.v.vizza@jpl.nasa.gov. Media who registered for the earlier teleconference-only version of this event do not need to re-register. NASA’s media accreditation policy is available online.
The sample, called “Sapphire Canyon,” was collected in July 2024 from a set of rocky outcrops on the edges of Neretva Vallis, a river valley carved by water rushing into Jezero Crater long ago.
Since landing in the Red Planet’s Jezero Crater in February 2021, Perseverance has collected 30 samples. The rover still has six empty sample tubes to fill, and it continues to collect detailed information about geologic targets that it hasn’t sampled by using its abrasion tool. Among the rover’s science instruments is a weather station that provides environmental information for future human missions, as well as swatches of spacesuit material so that NASA can study how it fares on Mars.
Managed for NASA by Caltech, JPL built and manages operations of the Perseverance rover on behalf of the agency’s Science Mission Directorate as part of NASA’s Mars Exploration Program portfolio.
To learn more about Perseverance visit:
https://www.nasa.gov/perseverance
-end-
Bethany Stevens / Karen Fox
Headquarters, Washington
202-358-1600
bethany.c.stevens@nasa.gov / karen.c.fox@nasa.gov
DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov
Share
Details
Last Updated Sep 10, 2025 LocationNASA Headquarters Related Terms
Perseverance (Rover) Mars 2020 Planetary Science Division Science Mission Directorate
View the full article
-
By NASA
Explore This Section Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
Perseverance Meets the Megabreccia
NASA’s Mars Perseverance rover acquired this image of the “Scotiafjellet” workspace on Aug. 31, 2025, using its onboard Left Navigation Camera (Navcam). The camera is located high on the rover’s mast and aids in driving. This image was acquired on Sol 1610, or Martian day 1,610 of the Mars 2020 mission, at the local mean solar time of 14:52:20. NASA/JPL-Caltech Written by By Henry Manelski, Ph.D. student at Purdue University
Last week, the Perseverance rover began an exciting new journey. Driving northwest of the Soroya ridge, Perseverance entered an area filled with a diverse range of boulders that the science team believes could hold clues to Mars’ early history. The terrain we are exploring is known as megabreccia: a chaotic mixture of broken rock fragments likely produced during ancient asteroid impacts. Some blocks may have originated in the gargantuan Isidis impact event, which created a 1,200-mile-wide crater (about 1,930 kilometers) just east of Jezero. Studying megabreccia could help us link Jezero’s geology to the wider region around Isidis Basin, tying local observations to Mars’ global history.
The rover is now beginning a systematic exploration of these rocks, starting at Scotiafjellet. If they are truly megabreccia, they could contain pieces of deep crustal material, offering a rare glimpse into Mars’ interior. These rocks likely predate the deltaic and volcanic deposits we explored earlier in Jezero Crater, making them some of the oldest accessible rocks Perseverance will ever encounter. They may therefore reveal to what extent water was present on ancient Mars — a key question as we continue our search for signs of past life on the Red Planet. In short, by venturing into this jumbled terrain, Perseverance is giving us a front-row seat to the earliest chapters of Mars’ story.
Want to read more posts from the Perseverance team?
Visit Mission Updates
Want to learn more about Perseverance’s science instruments?
Visit the Science Instruments page
Share
Details
Last Updated Sep 08, 2025 Related Terms
Blogs Explore More
4 min read Curiosity Blog, Sols 4641-4648: Thinking Outside and Inside the ‘Boxwork’
Article
4 days ago
2 min read Over Soroya Ridge & Onward!
Article
2 weeks ago
3 min read Curiosity Blog, Sols 4638-4640: Imaging Extravaganza Atop a Ridge
Article
2 weeks ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
NASA’s Perseverance Mars rover took this selfie on September 10, 2021, the 198th Martian day, or sol of its mission. Credit: NASA/JPL-Caltech NASA will host a media teleconference at 11 a.m. EDT Wednesday, Sept. 10, to discuss the analysis of a rock sampled by the agency’s Perseverance Mars rover last year, which is the subject of a forthcoming science paper.
The sample, called “Sapphire Canyon,” was collected in July 2024 from a set of rocky outcrops on the edges of Neretva Vallis, a river valley carved by water rushing into Jezero Crater long ago.
Audio and visuals of the call will stream on the agency’s website at:
https://www.nasa.gov/live
Participants in the teleconference include:
Acting NASA Administrator Sean Duffy Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington Lindsay Hays, Senior Scientist for Mars Exploration, Planetary Science Division, NASA Headquarters Katie Stack Morgan, Perseverance Project Scientist, NASA’s Jet Propulsion Laboratory in Southern California Joel Hurowitz, planetary scientist, Stony Brook University, New York To ask questions by phone, members of the media must RSVP no later than two hours before the start of the event to: rexana.v.vizza@jpl.nasa.gov. NASA’s media accreditation policy is available online.
Since landing in the Red Planet’s Jezero Crater in February 2021, Perseverance has collected 30 samples. The rover still has six empty sample tubes to fill, and it continues to collect detailed information about geologic targets that it hasn’t sampled by using its abrasion tool. Among the rover’s science instruments is a weather station that provides environmental information for future human missions, as well as swatches of spacesuit material so that NASA can study how it fares on Mars.
Managed for NASA by Caltech, JPL built and manages operations of the Perseverance rover on behalf of the agency’s Science Mission Directorate as part of NASA’s Mars Exploration Program portfolio.
To learn more about Perseverance visit:
https://www.nasa.gov/perseverance
-end-
Bethany Stevens / Karen Fox
Headquarters, Washington
202-358-1600
bethany.c.stevens@nasa.gov / karen.c.fox@nasa.gov
DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov
Share
Details
Last Updated Sep 08, 2025 LocationNASA Headquarters Related Terms
Perseverance (Rover) Mars Mars 2020 Planetary Science Division Science Mission Directorate View the full article
-
By NASA
Explore Webb Science James Webb Space Telescope (JWST) NASA Webb Looks at… Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Webb Timeline Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Science Explainers Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read NASA Webb Looks at Earth-Sized, Habitable-Zone Exoplanet TRAPPIST-1 e
This artist’s concept shows the volatile red dwarf star TRAPPIST-1 and its four most closely orbiting planets. Full image and caption shown below. Credits:
Artwork: NASA, ESA, CSA, STScI, Joseph Olmsted (STScI) Scientists are in the midst of observing the exoplanet TRAPPIST-1 e with NASA’s James Webb Space Telescope. Careful analysis of the results so far presents several potential scenarios for what the planet’s atmosphere and surface may be like, as NASA science missions lay key groundwork to answer the question, “are we alone in the universe?”
“Webb’s infrared instruments are giving us more detail than we’ve ever had access to before, and the initial four observations we’ve been able to make of planet e are showing us what we will have to work with when the rest of the information comes in,” said Néstor Espinoza of the Space Telescope Science Institute in Baltimore, Maryland, a principal investigator on the research team. Two scientific papers detailing the team’s initial results are published in the Astrophysical Journal Letters.
Image A: Trappist-1 e (Artist’s Concept)
This artist’s concept shows the volatile red dwarf star TRAPPIST-1 and its four most closely orbiting planets, all of which have been observed by NASA’s James Webb Space Telescope. Webb has found no definitive signs of an atmosphere around any of these worlds yet. Artwork: NASA, ESA, CSA, STScI, Joseph Olmsted (STScI) Of the seven Earth-sized worlds orbiting the red dwarf star TRAPPIST-1, planet e is of particular interest because it orbits the star at a distance where water on the surface is theoretically possible — not too hot, not too cold — but only if the planet has an atmosphere. That’s where Webb comes in. Researchers aimed the telescope’s powerful NIRSpec (Near-Infrared Spectrograph) instrument at the system as planet e transited, or passed in front of, its star. Starlight passing through the planet’s atmosphere, if there is one, will be partially absorbed, and the corresponding dips in the light spectrum that reaches Webb will tell astronomers what chemicals are found there. With each additional transit, the atmospheric contents become clearer as more data is collected.
Primary atmosphere unlikely
Though multiple possibilities remain open for planet e because only four transits have been analyzed so far, the researchers feel confident that the planet does not still have its primary, or original, atmosphere. TRAPPIST-1 is a very active star, with frequent flares, so it is not surprising to researchers that any hydrogen-helium atmosphere with which the planet may have formed would have been stripped off by stellar radiation. However many planets, including Earth, build up a heavier secondary atmosphere after losing their primary atmosphere. It is possible that planet e was never able to do this and does not have a secondary atmosphere. Yet researchers say there is an equal chance there is an atmosphere, and the team developed novel approaches to working with Webb’s data to determine planet e’s potential atmospheres and surface environments.
World of (fewer) possibilities
The researchers say it is unlikely that the atmosphere of TRAPPIST-1 e is dominated by carbon dioxide, analogous to the thick atmosphere of Venus and the thin atmosphere of Mars. However, the researchers also are careful to note that there are no direct parallels with our solar system.
“TRAPPIST-1 is a very different star from our Sun, and so the planetary system around it is also very different, which challenges both our observational and theoretical assumptions,” said team member Nikole Lewis, an associate professor of astronomy at Cornell University.
If there is liquid water on TRAPPIST-1 e, the researchers say it would be accompanied by a greenhouse effect, in which various gases, particularly carbon dioxide, keep the atmosphere stable and the planet warm.
“A little greenhouse effect goes a long way,” said Lewis, and the measurements do not rule out adequate carbon dioxide to sustain some water on the surface. According to the team’s analysis, the water could take the form of a global ocean, or cover a smaller area of the planet where the star is at perpetual noon, surrounded by ice. This would be possible because, due to the TRAPPIST-1 planets’ sizes and close orbits to their star, it is thought that they all are tidally locked, with one side always facing the star and one side always in darkness.
Image B: TRAPPIST-1 e Transmission Spectrum (NIRSpec)
This graphic compares data collected by Webb’s NIRSpec (Near-Infrared Spectrograph) with computer models of exoplanet TRAPPIST-1 e with (blue) and without (orange) an atmosphere. Narrow colored bands show the most likely locations of data points for each model. Illustration: NASA, ESA, CSA, STScI, Joseph Olmsted (STScI) Innovative new method
Espinoza and co-principal investigator Natalie Allen of Johns Hopkins University are leading a team that is currently making 15 additional observations of planet e, with an innovative twist. The scientists are timing the observations so that Webb catches both planets b and e transiting the star one right after the other. After previous Webb observations of planet b, the planet orbiting closest to TRAPPIST-1, scientists are fairly confident it is a bare rock without an atmosphere. This means that signals detected during planet b’s transit can be attributed to the star only, and because planet e transits at nearly the same time, there will be less complication from the star’s variability. Scientists plan to compare the data from both planets, and any indications of chemicals that show up only in planet e’s spectrum can be attributed to its atmosphere.
“We are really still in the early stages of learning what kind of amazing science we can do with Webb. It’s incredible to measure the details of starlight around Earth-sized planets 40 light-years away and learn what it might be like there, if life could be possible there,” said Ana Glidden, a post-doctoral researcher at Massachusetts Institute of Technology’s Kavli Institute for Astrophysics and Space Research, who led the research on possible atmospheres for planet e. “We’re in a new age of exploration that’s very exciting to be a part of,” she said.
The four transits of TRAPPIST-1 e analyzed in the new papers published today were collected by the JWST Telescope Scientist Team’s DREAMS (Deep Reconnaissance of Exoplanet Atmospheres using Multi-instrument Spectroscopy) collaboration.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
To learn more about Webb, visit:
https://science.nasa.gov/webb
Related Information
Webb Blog: Reconnaissance of Potentially Habitable Worlds with NASA’s Webb
Video: How to Study Exoplanets
Video: How do we learn about a planet’s Atmosphere?
View more about Exoplanets
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Related For Kids
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Related Images & Videos
Trappist-1 e (Artist’s Concept)
This artist’s concept shows the volatile red dwarf star TRAPPIST-1 and its four most closely orbiting planets, all of which have been observed by NASA’s James Webb Space Telescope. Webb has found no definitive signs of an atmosphere around any of these worlds yet.
TRAPPIST-1 e Transmission Spectrum (NIRSpec)
This graphic compares data collected by Webb’s NIRSpec (Near-Infrared Spectrograph) with computer models of exoplanet TRAPPIST-1 e with (blue) and without (orange) an atmosphere. Narrow colored bands show the most likely locations of data points for each model.
Share
Details
Last Updated Sep 08, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Location NASA Goddard Space Flight Center Contact Media Laura Betz
NASA’s Goddard Space Flight Center
Greenbelt, Maryland
laura.e.betz@nasa.gov
Leah Ramsay
Space Telescope Science Institute
Baltimore, Maryland
Hannah Braun
Space Telescope Science Institute
Baltimore, Maryland
Related Terms
James Webb Space Telescope (JWST) Exoplanets
Related Links and Documents
The science paper by N. Espinoza et al. The science paper by A. Glidden et al. JWST Telescope Science Team
Keep Exploring Related Topics
James Webb Space Telescope
Space Telescope
Exoplanets
Exoplanet Stories
Universe
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.