Jump to content

Vision Changes on Space Station


Recommended Posts

  • Publishers
Posted
4 Min Read

Vision Changes on Space Station

NASA astronaut Jonny Kim, assisted by JAXA astronaut Takuya Onishi, performs an eye ultrasound on the International Space Station.
NASA astronaut Jonny Kim, assisted by JAXA astronaut Takuya Onishi, performs an eye ultrasound on the International Space Station.
Credits: NASA

Science in Space July 2025

When astronauts began spending six months and more aboard the International Space Station, they started to notice changes in their vision. For example, many found that, as their mission progressed, they needed stronger reading glasses. Researchers studying this phenomenon identified swelling in the optic disc, which is where the optic nerve enters the retina, and flattening of the eye shape. These symptoms became known as Space-Associated Neuro-Ocular Syndrome (SANS).

Williams, wearing a black t-shirt, white shorts, and black socks, faces a piece of equipment that looks much like the machines eye doctors use on Earth. She has a blue and black cuff around her left thigh, which has two cords extending from it. She is holding on to a bar of the machine with her right hand.
NASA astronaut Suni Williams wears a cuff on her left leg as she conducts an eye exam for the Thigh Cuff investigation.
NASA

Microgravity causes a person’s blood and cerebrospinal fluid to shift toward the head and studies have suggested that these fluid shifts may be an underlying cause of SANS. A current investigation, Thigh Cuff, examines whether tight leg cuffs change the way fluid moves around inside the body, especially around the eyes and in the heart and blood vessels. If so, the cuffs could serve as a countermeasure against the problems associated with fluid shifts, including SANS. A simple and easy-to-use tool to counter the headward shift of body fluids could help protect astronauts on future missions to the Moon and Mars. The cuffs also could treat conditions on Earth that cause fluid to build up in the head or upper body, such as long-term bed rest and certain diseases.

Following fluid shifts

Kimbrough is wearing a dark blue t-shirt, a watch on his right wrist, and an earpiece. He has his right hand on hardware mounted to a work surface, a white piece of equipment that looks like the machines eye doctors use to test vision. A large computer screen is just behind and above him.
NASA astronaut Shane Kimbrough sets up optical coherence tomography hardware.
NASA

The Fluid Shifts investigation, conducted from 2015 through 2020, was the first to reveal changes in how blood drains from the brain in microgravity. Vision Impairment and Intracranial Pressure (VIIP) began testing the role those fluid shifts and resulting increased brain fluid pressure might play in the development of SANS. This research used a variety of measures including clinical eye exams with and without dilatation, imaging of the retina and associated blood vessels and nerves, noninvasive imaging to measure the thickness of retinal structures, and magnetic resonance imaging of the eye and optic nerve. In addition, approximately 300 astronauts completed questionnaires to document vision changes during their missions.

In one paper published from the research, scientists described how these imaging techniques have improved the understanding of SANS. The authors summarized emerging research on developing a head-mounted virtual reality display that can conduct multimodal, noninvasive assessment to help diagnose SANS.

Other researchers determined that measuring the optic nerve sheath diameter shows promise as a way to identify and quantify eye and vision changes during spaceflight. The paper also makes recommendations for standardizing imaging tools, measurement techniques, and other aspects of study design.

Another paper reported on an individual astronaut who had more severe than usual changes after a six-month spaceflight and certain factors that may have contributed. Researchers also observed improvement in the individual’s symptoms that may have been due to B vitamin supplementation and lower cabin carbon dioxide levels following departure of some crew members. While a single case does not allow researchers to determine cause and effect, the magnitude of the improvements suggest this individual may be more affected by environmental conditions such as carbon dioxide. This may have been the first attempt to mitigate SANS with inflight B vitamin supplementation.

Eyeball tissue stiffness

This image has two parts. The top is an image with three bands of grey across the bottom half with different textures, the bottom two separated by a red dotted line and a yellow line and the middle and top bands separated by a thin white band underscored by a blue line. A green line traces the top edge. The upper half of the image is black. The bottom is a graph with the bottom axis marked “time[s]” and the left axis marked “AU.” Red and blue lines oscillate up and down across the bottom axis. A legend labels the blue line “Chroidal Thickness” and the red line “Oximeter Signal.”
Optical coherence tomography image of the back of the eyeball (top) and thickness of the middle wall of the eye (bottom) from the SANSORI investigation.
University of Montreal

SANSORI, a CSA (Canadian Space Agency) investigation, used an imaging technique called Optical Coherence Tomography to examine whether reduced stiffness of eye tissue contributes to SANS. On Earth, changes in stiffness of the tissue around the eyeball have been associated with aging and conditions such as glaucoma and myopia. Researchers found that long-duration spaceflight affected the mechanical properties of eye tissues, which could contribute to the development of SANS. This finding could improve understanding of eye changes during spaceflight and in aging patients on Earth.

Genetic changes, artificial gravity

The MHU-8 investigation from JAXA (Japan Aerospace Exploration Agency), which examined changes in DNA and gene expression in mice after spaceflight, found changes in the optic nerve and retinal tissue. Researchers also found that artificial gravity may reduce these changes and could serve as a countermeasure on future missions.

These and other studies ultimately could help researchers prevent, diagnose, and treat vision impairment in crew members and people on Earth.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Image: This image from Copernicus Sentinel-1 shows circular agricultural structures near Tabarjal, in the barren desert of northern Saudi Arabia. View the full article
    • By NASA
      NASA/Jonny Kim In this June 13, 2025, photo, NASA astronaut Anne McClain shows off a hamburger-shaped cake to celebrate 200 cumulative days in space for JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi since his first spaceflight as an Expedition 48-49 Flight Engineer in 2016.
      Onishi and McClain launched to the International Space Station along with NASA astronaut Nichole Ayers and Roscosmos cosmonaut Kirill Peskov on March 14, 2025, as part of the Crew-10 mission. Aboard the orbital laboratory, the Crew-10 members conduct scientific research to prepare for human exploration beyond low Earth orbit and benefit humanity on Earth. McClain and Ayers also performed a spacewalk on May 1, 2025 – McClain’s third and Ayers’ first.
      Check out the International Space Station blog to follow the crew’s research and other activities.
      Image credit: NASA/Jonny Kim
      View the full article
    • By European Space Agency
      Video: 00:01:51 Space weather ‘reporter’ Vigil will be the world’s first space weather mission to be permanently positioned at Lagrange point 5, a unique vantage point that allows us to see solar activity days before it reaches Earth. ESA’s Vigil mission will be a dedicated operational space weather mission, sending data 24/7 from deep space. 
      Vigil’s tools as a space weather reporter at its unique location in deep space will drastically improve forecasting abilities. From there, Vigil can see ‘around the corner’ of the Sun and observe activity on the surface of the Sun days before it rotates into view from Earth. It can also watch the Sun-Earth line side-on, giving an earlier and clearer picture of coronal mass ejections (CMEs) heading toward Earth. 
      Radiation, plasma and particles flung towards Earth by the Sun can pose a very real risk to critical infrastructure our society relies on. This includes satellites for navigation, communications and banking services as well as power grids and radio communication on the ground. 
      A report by Lloyd’s of London estimates that a severe space weather event, caused by such an outburst of solar activity, could cost the global economy 2.4 trillion dollars over five years.  
      ESA’s response to this growing threat is Vigil, a cornerstone mission of the Agency’s Space Safety Programme, planned for launch in 2031. Vigil’s data will give us drastically improved early warnings and forecasts, which in turn help protect satellites, astronauts and critical infrastructure on the ground that we all depend on. 
      Click here for the subtitled version of the video. 
      Click here to access the related broadcast quality video material. 
      View the full article
    • By Space Force
      The annex details how the service will consider and prioritize commercial space sector requests for government resources, as well as government investment decisions.
      View the full article
    • By NASA
      An artist’s concept of the Starlab commercial space station.Starlab As NASA continues its transition toward a commercial low Earth orbit marketplace, an agency-supported commercial space station, Starlab, recently completed five development and design milestones. Starlab’s planned design consists of a service module and a habitat that will be launched to orbit on a single flight.
      The milestones, part of a NASA Space Act Agreement awarded in 2021, focused on reviews of Starlab’s preliminary design and safety, as well as spacecraft mockup and procurement plans. Each milestone provides NASA insight into the company’s development progress.
      “As we work toward the future of low Earth orbit, these milestones demonstrate Starlab’s dedication to building a commercial space station that can support human life and advance scientific research,” said Angela Hart, program manager for NASA’s Commercial Low Earth Orbit Development Program at the agency’s Johnson Space Center in Houston. “Both the insight shared by Starlab and the expertise shared by NASA are critical to future mission success.”
      Starlab recently completed a preliminary design and safety review of its station’s architecture and systems. The company now will begin detailed design and hardware development, culminating in a critical design review later this year. Critical design reviews are an important step in a station’s development, assessing design maturity before proceeding with fabrication and assembly.
      An artist’s concept of the Starlab commercial space station.Starlab Starlab also has begun construction of a full-scale, high-fidelity mockup of the station. The mockup, which will be housed in the Space Vehicle Mockup Facility at NASA Johnson, will be used for human-in-the-loop testing, during which participants perform day-in-the-life walkthroughs and evaluate the interior design, crew training, procedure development, hardware checks, and in-flight issue resolution.
      In addition, Starlab completed reviews of the system design architecture, procurement plan, and Northrop Grumman Cygnus spacecraft docking system design. In 2023, Northrop Grumman teamed up with Starlab to provide cargo logistics services and engineering consultation to support the commercial space station. These reviews included design configuration updates of solar arrays, docking ports, crew quarters, and more.
      NASA supports the design and development of multiple commercial space stations through funded and unfunded agreements. Following the design and development phase, NASA plans to procure services from one or more companies as part of its strategy to become one of many customers for low Earth orbit stations.
      Learn more about commercial space stations at:
      www.nasa.gov/commercialspacestations
      Keep Exploring Discover More Topics
      Commercial Space Stations
      Low Earth Orbit Economy
      Commercial Space
      Humans In Space
      View the full article
  • Check out these Videos

×
×
  • Create New...