Members Can Post Anonymously On This Site
NASA, Oxford Discover Warmer Uranus Than Once Thought
-
Similar Topics
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA/Jacob Shaw
NASA’s X-59 quiet supersonic research aircraft has officially begun taxi tests, marking the first time this one-of-a-kind experimental aircraft has moved under its own power.
NASA test pilot Nils Larson and the X-59 team, made up of NASA and contractor Lockheed Martin personnel, completed the aircraft’s first low-speed taxi test at U.S. Air Force Plant 42 in Palmdale, California, on July 10, 2025.
The taxiing represents the X-59’s last series of ground tests before first flight. Over the coming weeks, the aircraft will gradually increase its speed, leading up to a high-speed taxi test that will take the aircraft just short of the point where it would take off.
During the low-speed tests, engineers and flight crews monitored how the X-59 handled as it moved across the runway, working to validate critical systems like steering and braking. These checks help ensure the aircraft’s stability and control across a range of conditions, giving pilots and engineers confidence that all systems are functioning as expected.
The X-59 is the centerpiece of NASA’s Quesst mission, which aims to demonstrate quiet supersonic flight by reducing the loud sonic boom to a quieter “thump.” Data gathered from the X-59 will be shared with U.S. and international regulators to inform the establishment of new, data-driven acceptable noise thresholds related to supersonic commercial flight over land.
NASA’s X-59 quiet supersonic research aircraft taxis across the runway during a low-speed taxi test at U.S. Air Force Plant 42 in Palmdale, California, on July 10, 2025. The test marks the start of taxi tests and the last series of ground tests before first flight.NASA/Carla Thomas NASA’s X-59 quiet supersonic research aircraft moves under its own power for the first time at Lockheed Martin’s Skunk Works facility in Palmdale, California, on July 10, 2025. Guided by the aircraft’s crew chief, the event marks the beginning of taxi tests – a key milestone and the final series of ground tests before first flight.NASA/Carla Thomas Share
Details
Last Updated Jul 17, 2025 Related Terms
Aeronautics Aeronautics Research Mission Directorate Ames Research Center Armstrong Flight Research Center Commercial Supersonic Technology Glenn Research Center Integrated Aviation Systems Program Langley Research Center Low Boom Flight Demonstrator Quesst (X-59) Supersonic Flight Explore More
3 min read NASA Glenn Announces 2025 Drop Tower Challenge Winners
Article 1 day ago 5 min read NASA’s SpaceX Crew-11 Mission Gears Up for Space Station Research
Article 2 days ago 2 min read X-59 Model Tested in Japanese Supersonic Wind Tunnel
Article 6 days ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Aeronautics
Quesst
Quesst is NASA's mission to demonstrate how the X-59 can fly supersonic without generating loud sonic booms and then survey…
Integrated Aviation Systems Program
View the full article
-
By NASA
4 min read
NASA to Launch SNIFS, Sun’s Next Trailblazing Spectator
July will see the launch of the groundbreaking Solar EruptioN Integral Field Spectrograph mission, or SNIFS. Delivered to space via a Black Brant IX sounding rocket, SNIFS will explore the energy and dynamics of the chromosphere, one of the most complex regions of the Sun’s atmosphere. The SNIFS mission’s launch window at the White Sands Missile Range in New Mexico opens on Friday, July 18.
The chromosphere is located between the Sun’s visible surface, or photosphere, and its outer layer, the corona. The different layers of the Sun’s atmosphere have been researched at length, but many questions persist about the chromosphere. “There’s still a lot of unknowns,” said Phillip Chamberlin, a research scientist at the University of Colorado Boulder and principal investigator for the SNIFS mission.
The reddish chromosphere is visible on the Sun’s right edge in this view of the Aug. 21, 2017, total solar eclipse from Madras, Oregon.Credit: NASA/Nat Gopalswamy The chromosphere lies just below the corona, where powerful solar flares and massive coronal mass ejections are observed. These solar eruptions are the main drivers of space weather, the hazardous conditions in near-Earth space that threaten satellites and endanger astronauts. The SNIFS mission aims to learn more about how energy is converted and moves through the chromosphere, where it can ultimately power these massive explosions.
“To make sure the Earth is safe from space weather, we really would like to be able to model things,” said Vicki Herde, a doctoral graduate of CU Boulder who worked with Chamberlin to develop SNIFS.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
This footage from NASA’s Solar Dynamics Observatory shows the Sun in the 304-angstrom band of extreme ultraviolet light, which primarily reveals light from the chromosphere. This video, captured on Feb. 22, 2024, shows a solar flare — as seen in the bright flash on the upper left.Credit: NASA/SDO The SNIFS mission is the first ever solar ultraviolet integral field spectrograph, an advanced technology combining an imager and a spectrograph. Imagers capture photos and videos, which are good for seeing the combined light from a large field of view all at once. Spectrographs dissect light into its various wavelengths, revealing which elements are present in the light source, their temperature, and how they’re moving — but only from a single location at a time.
The SNIFS mission combines these two technologies into one instrument.
“It’s the best of both worlds,” said Chamberlin. “You’re pushing the limit of what technology allows us to do.”
By focusing on specific wavelengths, known as spectral lines, the SNIFS mission will help scientists to learn about the chromosphere. These wavelengths include a spectral line of hydrogen that is the brightest line in the Sun’s ultraviolet (UV) spectrum, and two spectral lines from the elements silicon and oxygen. Together, data from these spectral lines will help reveal how the chromosphere connects with upper atmosphere by tracing how solar material and energy move through it.
The SNIFS mission will be carried into space by a sounding rocket. These rockets are effective tools for launching and carrying space experiments and offer a valuable opportunity for hands-on experience, particularly for students and early-career researchers.
(From left to right) Vicki Herde, Joseph Wallace, and Gabi Gonzalez, who worked on the SNIFS mission, stand with the sounding rocket containing the rocket payload at the White Sands Missile Range in New Mexico.Credit: courtesy of Phillip Chamberlin “You can really try some wild things,” Herde said. “It gives the opportunity to allow students to touch the hardware.”
Chamberlin emphasized how beneficial these types of missions can be for science and engineering students like Herde, or the next generation of space scientists, who “come with a lot of enthusiasm, a lot of new ideas, new techniques,” he said.
The entirety of the SNIFS mission will likely last up to 15 minutes. After launch, the sounding rocket is expected to take 90 seconds to make it to space and point toward the Sun, seven to eight minutes to perform the experiment on the chromosphere, and three to five minutes to return to Earth’s surface.
A previous sounding rocket launch from the White Sands Missile Range in New Mexico. This mission carried a copy of the Extreme Ultraviolet Variability Experiment (EVE).
Credit: NASA/University of Colorado Boulder, Laboratory for Atmospheric and Space Physics/James Mason The rocket will drift around 70 to 80 miles (112 to 128 kilometers) from the launchpad before its return, so mission contributors must ensure it will have a safe place to land. White Sands, a largely empty desert, is ideal.
Herde, who spent four years working on the rocket, expressed her immense excitement for the launch. “This has been my baby.”
By Harper Lawson
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Jul 17, 2025 Related Terms
Heliophysics Goddard Space Flight Center Heliophysics Division Science & Research Sounding Rockets Sounding Rockets Program Wallops Flight Facility Explore More
6 min read NASA’s TRACERS Studies Explosive Process in Earth’s Magnetic Shield
Article 1 day ago 3 min read NASA Citizen Science and Your Career: Stories of Exoplanet Watch Volunteers
Doing NASA Science brings many rewards. But can taking part in NASA citizen science help…
Article 1 day ago 4 min read NASA Research Shows Path Toward Protocells on Titan
Article 3 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A team works together on their project during the 2024 NASA Space Apps Challenge event in in Arequipa, Peru. Teams have two days to respond to the challenges and submit their project for the chance to win one of 10 global awards. NASA invites innovators of all ages to register for the NASA Space Apps Challenge, held on Oct. 4-5. The 2025 theme is Learn, Launch, Lead, and participants will work alongside a vibrant community of scientists, technologists, and storytellers at more than 450 events worldwide. Participants can expect to learn skills to succeed in STEM fields, launch ideas that transform NASA’s open data into actionable tools, and lead their communities in driving technological innovation.
During the NASA Space Apps Challenge, participants in the U.S. and around the world gather at hundreds of in-person and virtual events to address challenges authored by subject matter experts across NASA divisions. These challenges range in complexity and topic, tasking participants with everything from creating machine learning models and leveraging artificial intelligence, to improving access to NASA research, to designing sustainable recycling systems for Mars, and to developing tools to evaluate local air quality here on Earth.
Dr. Yoseline Angel Lopez, a former space apps challenge winner and now an assistant research scientist at NASA’s Goddard Spaceflight Center in Greenbelt, Maryland, can attest that the opportunity to Learn, Launch, Lead goes far beyond the hackathon.
“The NASA Space Apps Challenge gave me and my team a meaningful opportunity to apply science to real-world problems and gain validation from NASA scientists and industry experts,” said Angel.
In 2021, her team’s winning web-app prototype was adopted by Colombia’s Ministry of Agriculture, connecting smallholder farmers with local buyers. The platform also supported agricultural land-use monitoring using satellite imagery.
After the hackathon, project submissions are judged by NASA and space agency experts. Winners are selected for one of 10 global awards.
“Participating in the hackathon is exciting on its own. But when your project can lead to greater opportunities and make a difference in your community, that’s a dream come true,” said Angel. She will return to the 2025 hackathon as a NASA subject matter expert and challenge author, giving a Golden Age of innovators the opportunity to make a difference in their communities through the use of data from NASA and 14 space agency partners.
This year’s partners include: Bahrain Space Agency; Brazilian Space Agency; CSA (Canadian Space Agency); ESA (European Space Agency); ISRO (Indian Space Research Organisation); Italian Space Agency; JAXA (Japan Aerospace Exploration Agency); Mohammed Bin Rashid Space Centre of the United Arab Emirates; National Space Activities Commission of Argentina; Paraguayan Space Agency; South African National Space Agency; Spanish Space Agency; Turkish Space Agency; and the UK Space Agency.
NASA Space Apps is funded by NASA’s Earth Science Division through a contract with Booz Allen Hamilton, Mindgrub, and SecondMuse.
We invite you to register for the 2025 NASA Space Apps Challenge and choose a virtual or in-person event near you at:
https://www.spaceappschallenge.org
Find videos about Space Apps at:
youtube.com/c/NASASpaceAppsChallenge
Social Media
Stay up to date with #SpaceApps by following these accounts:
Facebook logo @spaceappschallenge @SpaceApps Instagram logo @nasa_spaceapps Share
Details
Last Updated Jul 17, 2025 Related Terms
Prizes, Challenges, and Crowdsourcing Program Earth Earth Science Division General Get Involved Learning Resources Explore More
6 min read NASA Program Builds Bridge From Military to Civilian Careers for Johnson Team Members
Article 7 hours ago 3 min read NASA Citizen Science and Your Career: Stories of Exoplanet Watch Volunteers
Doing NASA Science brings many rewards. But can taking part in NASA citizen science help…
Article 1 day ago 2 min read Ejection Mechanism Design for the SPEED Test Architecture Challenge
Article 1 day ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
A collaboration between NASA and the Indian Space Research Organisation, NISAR will use synthetic aperture radar to monitor nearly all the planet’s land- and ice-covered surfaces twice every 12 days.Credit: NASA NASA will host a news conference at 12 p.m. EDT Monday, July 21, to discuss the upcoming NISAR (NASA-ISRO Synthetic Aperture Radar) mission.
The Earth-observing satellite, a first-of-its-kind collaboration between NASA and ISRO (Indian Space Research Organisation), carries an advanced radar system that will help protect communities by providing a dynamic, three-dimensional view of Earth in unprecedented detail and detecting the movement of land and ice surfaces down to the centimeter.
The NISAR mission will lift off from ISRO’s Satish Dhawan Space Centre in Sriharikota, on India’s southeastern coast. Launch is targeted for no earlier than late July.
NASA’s Jet Propulsion Laboratory in Southern California will stream the briefing live on its X, Facebook, and YouTube channels. Learn how to watch NASA content through a variety of platforms, including social media.
Participants in the news conference include:
Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters Karen St. Germain, director, Earth Science Division, NASA Headquarters Wendy Edelstein, deputy project manager, NISAR, NASA JPL Paul Rosen, project scientist, NISAR, NASA JPL To ask questions by phone, members of the media must RSVP no later than two hours before the start of the event to: rexana.v.vizza@jpl.nasa.gov. NASA’s media accreditation policy is available online. Questions can be asked on social media during the briefing using #AskNISAR.
With its two radar instruments — an S-band system provided by ISRO and an L-band system provided by NASA — NISAR will use a technique known as synthetic aperture radar (SAR) to scan nearly all the planet’s land and ice surfaces twice every 12 days. Each system’s signal is sensitive to different sizes of features on Earth’s surface, and each specializes in measuring different attributes, such as moisture content, surface roughness, and motion.
These capabilities will help scientists better understand processes involved in natural hazards and catastrophic events, such as earthquakes, volcanic eruptions, land subsidence, and landslides.
Additionally, NISAR’s cloud penetrating ability will aid urgent responses to communities during weather disasters such as hurricanes, storm surge, and flooding. The detailed maps the mission creates also will provide information on both gradual and sudden changes occurring on Earth’s land and ice surfaces.
Managed by Caltech for NASA, JPL leads the U.S. component of the NISAR project and provided the L-band SAR. NASA JPL also provided the radar reflector antenna, the deployable boom, a high-rate communication subsystem for science data, GPS receivers, a solid-state recorder, and payload data subsystem. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the Near Space Network, which will receive NISAR’s L-band data.
Multiple ISRO centers have contributed to NISAR. The Space Applications Centre is providing the mission’s S-band SAR. The U R Rao Satellite Centre provided the spacecraft bus. The rocket is from Vikram Sarabhai Space Centre, launch services are through Satish Dhawan Space Centre, and satellite mission operations are by the ISRO Telemetry Tracking and Command Network. The National Remote Sensing Centre is responsible for S-band data reception, operational products generation, and dissemination.
To learn more about NISAR, visit:
https://nisar.jpl.nasa.gov
-end-
Karen Fox / Elizabeth Vlock
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / elizabeth.a.vlock@nasa.gov
Andrew Wang / Scott Hulme
Jet Propulsion Laboratory, Pasadena, Calif.
626-379-6874 / 818-653-9131
andrew.wang@jpl.nasa.gov / scott.d.hulme@jpl.nasa.gov
Share
Details
Last Updated Jul 16, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
NISAR (NASA-ISRO Synthetic Aperture Radar) Earth Science Division Goddard Space Flight Center Jet Propulsion Laboratory Near Space Network Science Mission Directorate View the full article
-
By NASA
X-ray: NASA/CXC/RIT/A. Varga et al.; Illustration: NASA/CXC/SAO/M. Weiss; Image Processing: NASA/CXC/SAO/N. Wolk A star is unleashing a barrage of X-rays that is causing a closely-orbiting, young planet to wither away an astonishing rate, according to a new study using data from NASA’s Chandra X-ray Observatory and described in our latest press release. A team of researchers has determined that this planet will go from the size of Jupiter down to a small, barren world.
This graphic provides a visual representation of what astronomers think is happening around the star (known as TOI 1227) and a planet that is orbiting it at a fraction the distance between Mercury and the Sun. This “baby” planet, called TOI 1227 b, is just about 8 million years old, about a thousand times younger than our Sun. The main panel is an artist’s concept that shows the Jupiter-sized planet (lower left) around TOI 1227, which is a faint red star. Powerful X-rays from the star’s surface are tearing away the atmosphere of the planet, represented by the blue tail. The star’s X-rays may eventually completely remove the atmosphere.
The team used new Chandra data — seen in the inset — to measure the amounts of X-rays from TOI 1227 that are striking the planet. Using computer models of the effects of these X-rays, they concluded they will have a transformative effect, rapidly stripping away the planet’s atmosphere. They estimate that the planet is losing a mass equivalent to a full Earth’s atmosphere about every 200 years.
The researchers used different sets of data to estimate the age of TOI 1227 b. One method exploits measurements of how TOI 1227 b’s host star moves through space in comparison to nearby populations of stars with known ages. A second method compared the brightness and surface temperature of the star with theoretical models of evolving stars. The very young age of TOI 1227 b makes it the second youngest planet ever to be observed passing in front of its host star (a so-called transit). Previously the planet had been estimated by others to be about 11 million years old.
Of all the exoplanets astronomers have found with ages less than 50 million years, TOI 1227 b stands out for having the longest year and the host planet with the lowest mass. These properties, and the high dose of X-rays it is receiving, make it an outstanding target for future observations.
A paper describing these results has been accepted publication in The Astrophysical Journal and a preprint is available here. The authors of the paper are Attila Varga (Rochester Institute of Technology), Joel Kastner (Rochester Institute of Technology), Alexander Binks (University of Tubingen, Germany), Hans Moritz Guenther (Massachusetts Institute of Technology), and Simon J. Murphy (University of New South Wales Canberra in Australia).
NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
Read more from NASA’s Chandra X-ray Observatory Learn more about the Chandra X-ray Observatory and its mission here:
https://www.nasa.gov/chandra
https://chandra.si.edu
Visual Description
This release features an artist’s illustration of a Jupiter-sized planet closely orbiting a faint red star. An inset image, showing the star in X-ray light from Chandra, is superimposed on top of the illustration at our upper left corner.
At our upper right, the red star is illustrated as a ball made of intense fire. The planet, slightly smaller than the star, is shown at our lower left. Powerful X-rays from the star are tearing away the atmosphere of the planet, causing wisps of material to flow away from the planet’s surface in the opposite direction from the star. This gives the planet a slight resemblance to a comet, complete with a tail.
X-ray data from Chandra, presented in the inset image, shows the star as a small purple orb on a black background. Astronomers used the Chandra data to measure the amount of X-rays striking the planet from the star. They estimate that the planet is losing a mass equivalent to a full Earth’s atmosphere about every 200 years, causing it to ultimately shrink from the size of Jupiter down to a small, barren world.
News Media Contact
Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
corinne.m.beckinger@nasa.gov
Share
Details
Last Updated Jul 16, 2025 EditorLee MohonContactCorinne M. Beckingercorinne.m.beckinger@nasa.gov Related Terms
Astrophysics Chandra X-Ray Observatory Exoplanet Science Exoplanets Marshall Astrophysics Marshall Space Flight Center Science & Research Studying Exoplanets The Universe Explore More
6 min read NASA’s TRACERS Studies Explosive Process in Earth’s Magnetic Shield
High above us, particles from the Sun hurtle toward Earth, colliding with the upper atmosphere…
Article 3 hours ago 3 min read NASA Citizen Science and Your Career: Stories of Exoplanet Watch Volunteers
Doing NASA Science brings many rewards. But can taking part in NASA citizen science help…
Article 5 hours ago 4 min read NASA’s IXPE Imager Reveals Mysteries of Rare Pulsar
Article 1 day ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.