Members Can Post Anonymously On This Site
NASA Software Catalog Puts Agency Solutions at Innovators’ Fingertips
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A team works together on their project during the 2024 NASA Space Apps Challenge event in in Arequipa, Peru. Teams have two days to respond to the challenges and submit their project for the chance to win one of 10 global awards. NASA invites innovators of all ages to register for the NASA Space Apps Challenge, held on Oct. 4-5. The 2025 theme is Learn, Launch, Lead, and participants will work alongside a vibrant community of scientists, technologists, and storytellers at more than 450 events worldwide. Participants can expect to learn skills to succeed in STEM fields, launch ideas that transform NASA’s open data into actionable tools, and lead their communities in driving technological innovation.
During the NASA Space Apps Challenge, participants in the U.S. and around the world gather at hundreds of in-person and virtual events to address challenges authored by subject matter experts across NASA divisions. These challenges range in complexity and topic, tasking participants with everything from creating machine learning models and leveraging artificial intelligence, to improving access to NASA research, to designing sustainable recycling systems for Mars, and to developing tools to evaluate local air quality here on Earth.
Dr. Yoseline Angel Lopez, a former space apps challenge winner and now an assistant research scientist at NASA’s Goddard Spaceflight Center in Greenbelt, Maryland, can attest that the opportunity to Learn, Launch, Lead goes far beyond the hackathon.
“The NASA Space Apps Challenge gave me and my team a meaningful opportunity to apply science to real-world problems and gain validation from NASA scientists and industry experts,” said Angel.
In 2021, her team’s winning web-app prototype was adopted by Colombia’s Ministry of Agriculture, connecting smallholder farmers with local buyers. The platform also supported agricultural land-use monitoring using satellite imagery.
After the hackathon, project submissions are judged by NASA and space agency experts. Winners are selected for one of 10 global awards.
“Participating in the hackathon is exciting on its own. But when your project can lead to greater opportunities and make a difference in your community, that’s a dream come true,” said Angel. She will return to the 2025 hackathon as a NASA subject matter expert and challenge author, giving a Golden Age of innovators the opportunity to make a difference in their communities through the use of data from NASA and 14 space agency partners.
This year’s partners include: Bahrain Space Agency; Brazilian Space Agency; CSA (Canadian Space Agency); ESA (European Space Agency); ISRO (Indian Space Research Organisation); Italian Space Agency; JAXA (Japan Aerospace Exploration Agency); Mohammed Bin Rashid Space Centre of the United Arab Emirates; National Space Activities Commission of Argentina; Paraguayan Space Agency; South African National Space Agency; Spanish Space Agency; Turkish Space Agency; and the UK Space Agency.
NASA Space Apps is funded by NASA’s Earth Science Division through a contract with Booz Allen Hamilton, Mindgrub, and SecondMuse.
We invite you to register for the 2025 NASA Space Apps Challenge and choose a virtual or in-person event near you at:
https://www.spaceappschallenge.org
Find videos about Space Apps at:
youtube.com/c/NASASpaceAppsChallenge
Social Media
Stay up to date with #SpaceApps by following these accounts:
Facebook logo @spaceappschallenge @SpaceApps Instagram logo @nasa_spaceapps Share
Details
Last Updated Jul 17, 2025 Related Terms
Prizes, Challenges, and Crowdsourcing Program Earth Earth Science Division General Get Involved Learning Resources Explore More
6 min read NASA Program Builds Bridge From Military to Civilian Careers for Johnson Team Members
Article 7 hours ago 3 min read NASA Citizen Science and Your Career: Stories of Exoplanet Watch Volunteers
Doing NASA Science brings many rewards. But can taking part in NASA citizen science help…
Article 1 day ago 2 min read Ejection Mechanism Design for the SPEED Test Architecture Challenge
Article 1 day ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Of all the possible entry points to NASA, the agency’s SkillBridge Program has been instrumental in helping servicemembers transition from the military and into civilian careers. Offered in partnership with the Department of Defense (DoD), the program enables individuals to spend their final months of military service working with a NASA office or organization. SkillBridge fellows work anywhere from 90 to 180 days, contributing their unique skillsets to the agency while building their network and knowledge.
The Johnson Space Center in Houston hosted NASA’s first SkillBridge fellow in 2019, paving the way for dozens of others to follow. SkillBridge participants are not guaranteed a job offer at the end of their fellowship, but many have gone on to accept full-time positions with NASA. About 25 of those former fellows currently work at Johnson, filling roles as varied as their military experiences.
Miguel Shears during his military service (left) and his SkillBridge fellowship at Johnson Space Center.Images courtesy of Miguel Shears Miguel Shears retired from the Marine Corps in November 2023. He ended his 30 years of service as the administration, academics, and operations chief for the Marine Corps University in Quantico, Virginia, where he was also an adjunct professor. Shears completed a SkillBridge fellowship with FOD in the summer and fall of 2023, supporting the instructional systems design team. He was hired as a full-time employee upon his military retirement and currently serves as an instructional systems designer for the Instructor Training Module, Mentorship Module, and Spaceflight Academy. He conducts training needs analysis for FOD, as well.
Ever Zavala as a flight test engineer in the U.S. Air Force (left) and as a capsule communicator in the Mission Control Center at Johnson Space Center.Images courtesy of Ever Zavala Ever Zavala was very familiar with Johnson before becoming a SkillBridge fellow. He spent the last three of his nearly 24-year Air Force career serving as the deputy director of the DoD Human Spaceflight Payloads Office at Johnson. His team oversaw the development, integration, launch, and operation of payloads hosting DoD experiments on small satellites and the International Space Station. He also became a certified capsule communicator, or capcom, in December 2022, and was the lead capcom for SpaceX’s 28th commercial resupply services mission to the orbiting laboratory.
Zavala’s SkillBridge fellowship was in Johnson’s Astronaut Office, where he worked as a capcom, capcom instructor, and an integration engineer supporting the Extravehicular Activity and Human Surface Mobility Program. He was involved in developing a training needs analysis and agency simulators for the human landing system, among other projects.
He officially joined the center team as a full-time contractor in August 2024. He is currently a flight operations safety officer within the Flight Operations Directorate (FOD) and continues to serve as a part-time capcom.
Carl Johnson with his wife during his first visit to Johnson Space Center (left) and completing some electrical work as part of his SkillBridge fellowship. Images courtesy of Carl Johnson Carl Johnson thanks his wife for helping him find a path to NASA. While she was a Pathways intern — and his girlfriend at the time — she gave him a tour of the center that inspired him to join the agency when he was ready to leave the Army. She helped connect him to one of the center’s SkillBridge coordinators and the rest is history.
Johnson was selected for a SkillBridge fellowship in the Dynamic System Test Branch. From February to June 2023, he supported development of the lunar terrain vehicle ground test unit and contributed to the Active Response Gravity Offload System (ARGOS), which simulates reduced gravity for astronaut training.
Johnson officially joined the center team as an electrical engineer in the Engineering Directorate’s Software, Robotics, and Simulation Division in September 2023. He is currently developing a new ARGOS spacewalk simulator and training as an operator and test director for another ARGOS system.
Johnson holds an electrical engineering degree from the United States Military Academy. He was on active duty in the Army for 10 years and concluded his military career as an instructor and small group leader for the Engineer Captains Career Course. In that role, he was responsible for instructing, mentoring, and preparing the next generation of engineer captains.
Kevin Quinn during his Navy service.Image courtesy of Kevin Quinn Kevin Quinn served in the Navy for 22 years. His last role was maintenance senior chief with Air Test and Evaluation Squadron 31, known as “the Dust Devils.” Quinn managed the operations and maintenance of 33 aircraft, ensuring their readiness for complex missions and contributing to developmental flight tests and search and rescue missions. He applied that experience to his SkillBridge fellowship in quality assurance at Ellington Field in 2024. Quinn worked to enhance flight safety and astronaut training across various aircraft, including the T-38, WB-57, and the Super Guppy. He has continued contributing to those projects since being hired as a full-time quality assurance employee in 2025.
Andrew Ulat during his Air Force career. Image courtesy of Andrew Ulat Andrew Ulat retired from the Air Force after serving for 21 years as an intercontinental ballistic missile launch control officer and strategic operations advisor. His last role in the military was as a director of staff at the Air Command and Staff College at Maxwell Air Force Base in Montgomery, Alabama. There he served as a graduate-level instructor teaching international security concepts to mid-level officers and civilian counterparts from all branches of the military and various federal agencies.
Ulat started his SkillBridge fellowship as an integration engineer in Johnson’s X-Lab, supporting avionics, power, and software integration for the Gateway lunar space station. Ulat transitioned directly from his fellowship into a similar full-time position at Johnson in May 2024.
Ariel Vargas receives a commendation during his Army service (left) and in his official NASA portrait. Ariel Vargas transitioned to NASA after serving for five years in the Army. His last role in the military was as a signal officer, which involved leading teams managing secure communications and network operations in dynamic and mission-critical environments in the Middle East and the United States.
Vargas completed his SkillBridge fellowship in November 2023, supporting Johnson’s Office of the Chief Information Officer (OCIO). During his fellowship, he led a center-wide wireless augmentation project that modernized Johnson’s connectivity.
He became a full-time civil servant in May 2024 and currently serves as the business operations and partnerships lead within OCIO, supporting a digital transformation initiative. In this role, he leads efforts to streamline internal business operations, manage strategic partnerships, and drive cross-functional collaboration.
“My time in the military taught me the value of service, leadership, and adaptability—qualities that I now apply daily in support of NASA’s mission,” Vargas said. “I’m proud to be part of the Johnson team and hope my story can inspire other service members considering the SkillBridge pathway.”
Explore More
3 min read Melissa Harris: Shaping NASA’s Vision for a Future in Low Earth Orbit
Article 2 days ago 5 min read Protected: Glenn Extreme Environments Rig (GEER)
Article 3 days ago 5 min read Chief Training Officer Teresa Sindelar Touches the Future of Human Spaceflight
Article 3 days ago View the full article
-
By NASA
6 Min Read NASA’s TRACERS Studies Explosive Process in Earth’s Magnetic Shield
High above us, particles from the Sun hurtle toward Earth, colliding with the upper atmosphere and creating powerful explosions in a murky process called magnetic reconnection. A single magnetic reconnection event can release as much energy as the entire United States uses in a day.
NASA’s new TRACERS (Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites) mission will study magnetic reconnection, answering key questions about how it shapes the impacts of the Sun and space weather on our daily lives.
To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video
NASA’s TRACERS mission, or the Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites, will fly in low Earth orbit through the polar cusps, funnel-shaped holes in the magnetic field, to study magnetic reconnection and its effects in Earth’s atmosphere. NASA’s Goddard Space Flight Center The TRACERS spacecraft are slated to launch no earlier than late July 2025 aboard a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California. The two TRACERS spacecraft will orbit Earth to study how the solar wind — a continuous outpouring of electrically charged particles from the Sun — interacts with Earth’s magnetic shield, the magnetosphere.
What Is Magnetic Reconnection?
As solar wind flows out from the Sun, it carries the Sun’s embedded magnetic field out across the solar system. Reaching speeds over one million miles per hour, this soup of charged particles and magnetic field plows into planets in its path.
“Earth’s magnetosphere acts as a protective bubble that deflects the brunt of the solar wind’s force. You can think of it as a bar magnet that’s rotating and floating around in space,” said John Dorelli, TRACERS mission science lead at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “As the solar wind collides with Earth’s magnetic field, this interaction builds up energy that can cause the magnetic field lines to snap and explosively fling away nearby particles at high speeds — this is magnetic reconnection.”
Openings in Earth’s magnetic field at the North and South Poles, called polar cusps, act as funnels allowing charged particles to stream down towards Earth and collide with atmospheric gases. These phenomena are pieces of the space weather system that is in constant motion around our planet — whose impacts range from breathtaking auroras to disruption of communications systems and power grids. In May 2024, Earth experienced the strongest geomagnetic storm in over 20 years, which affected high-voltage power lines and transformers, forced trans-Atlantic flights to change course, and caused GPS-guided tractors to veer off-course.
How Will TRACERS Study Magnetic Reconnection?
The TRACERS mission’s twin satellites, each a bit larger than a washing machine, will fly in tandem, one behind the other, in a relatively low orbit about 360 miles above Earth. Traveling over 16,000 mph, each satellite hosts a suite of instruments to measure different aspects of extremely hot, ionized gas called plasma and how it interacts with Earth’s magnetosphere.
An artist’s concept of the twin TRACERS satellites in orbit above Earth. NASA’s Goddard Space Flight Center The satellites will focus where Earth’s magnetic field dips down to the ground at the North polar cusp. By placing the twin TRACERS satellites in a Sun-synchronous orbit, they always pass through Earth’s dayside polar cusp, studying thousands of reconnection events at these concentrated areas.
This will build a step-by-step picture of how magnetic reconnection changes over time and from Earth’s dayside to its nightside.
NASA’s TRICE-2 mission also studied magnetic reconnection near Earth, but with a pair of sounding rockets launched into the northern polar cusp over the Norwegian Sea in 2018.
“The TRICE mission took great data. It took a snapshot of the Earth system in one state. It proved that these instruments could make this kind of measurement and achieve this kind of science,” said David Miles, TRACERS principal investigator at the University of Iowa. “But the system’s more complicated than that. The TRACERS mission demonstrates how you can use multi-spacecraft technology to get a picture of how things are moving and evolving.”
The TRACERS mission demonstrates how you can use multi-spacecraft technology to get a picture of how things are moving and evolving.
DAVID MILES
TRACERS principal investigator, University of Iowa
Since previous missions could only take one measurement of an event per launch, too many changes in the region prevented forming a full picture. Following each other closely in orbit, the twin TRACERS satellites will provide multiple snapshots of the same area in rapid succession, spaced as closely as 10 seconds apart from each other, reaching a record-breaking 3,000 measurements in one year. These snapshots will build a picture of how the whole Earth system behaves in reaction to space weather, allowing scientists to better understand how to predict space weather in the magnetosphere.
Working Across Missions in Solar Harmony
The TRACERS mission will collaborate with other NASA heliophysics missions, which are strategically placed near Earth and across the solar system. At the Sun, NASA’s Parker Solar Probe closely observes our closest star, including magnetic reconnection there and its role in heating and accelerating the solar wind that drives the reconnection events investigated by TRACERS.
Data from recently launched NASA missions, EZIE (Electrojet Zeeman Imaging Explorer), studying electrical currents at Earth’s nightside, and PUNCH (Polarimeter to Unify the Corona and Heliosphere) studying the solar wind and interactions in Earth’s atmosphere, can be combined with observations from TRACERS. With research from these missions, scientists will be able to get a more complete understanding of how and when Earth’s protective magnetic shield can suddenly connect with solar wind, allowing the Sun’s material into Earth’s system.
“The TRACERS mission will be an important addition to NASA’s heliophysics fleet.” said Reinhard Friedel, TRACERS program scientist at NASA Headquarters in Washington. “The missions in the fleet working together increase understanding of our closest star to improve our ability to understand, predict, and prepare for space weather impacts on humans and technology in space.”
The TRACERS mission is led by David Miles at the University of Iowa with support from the Southwest Research Institute in San Antonio, Texas. NASA’s Heliophysics Explorers Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the mission for the agency’s Heliophysics Division at NASA Headquarters in Washington. The University of Iowa, Southwest Research Institute, University of California, Los Angeles, and the University of California, Berkeley, all lead instruments on TRACERS that study changes in the magnetic field and electric field. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida, manages the VADR (Venture-class Acquisition of Dedicated and Rideshare) contract.
by Desiree Apodaca
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Header Image:
An artist’s concept of the TRACERS mission, which will help research magnetic reconnection and its effects in Earth’s atmosphere.
Credits: Andy Kale
Share
Details
Last Updated Jul 16, 2025 Related Terms
Goddard Space Flight Center Earth’s Magnetic Field Heliophysics Heliophysics Division The Sun The Sun & Solar Physics TRACERS Explore More
4 min read Linking Satellite Data and Community Knowledge to Advance Alaskan Snow Science
Article
2 days ago
2 min read Hubble Snaps Galaxy Cluster’s Portrait
Article
5 days ago
7 min read NASA’s Parker Solar Probe Snaps Closest-Ever Images to Sun
On its record-breaking pass by the Sun late last year, NASA’s Parker Solar Probe captured…
Article
6 days ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
An artist’s concept of the Starlab commercial space station.Starlab As NASA continues its transition toward a commercial low Earth orbit marketplace, an agency-supported commercial space station, Starlab, recently completed five development and design milestones. Starlab’s planned design consists of a service module and a habitat that will be launched to orbit on a single flight.
The milestones, part of a NASA Space Act Agreement awarded in 2021, focused on reviews of Starlab’s preliminary design and safety, as well as spacecraft mockup and procurement plans. Each milestone provides NASA insight into the company’s development progress.
“As we work toward the future of low Earth orbit, these milestones demonstrate Starlab’s dedication to building a commercial space station that can support human life and advance scientific research,” said Angela Hart, program manager for NASA’s Commercial Low Earth Orbit Development Program at the agency’s Johnson Space Center in Houston. “Both the insight shared by Starlab and the expertise shared by NASA are critical to future mission success.”
Starlab recently completed a preliminary design and safety review of its station’s architecture and systems. The company now will begin detailed design and hardware development, culminating in a critical design review later this year. Critical design reviews are an important step in a station’s development, assessing design maturity before proceeding with fabrication and assembly.
An artist’s concept of the Starlab commercial space station.Starlab Starlab also has begun construction of a full-scale, high-fidelity mockup of the station. The mockup, which will be housed in the Space Vehicle Mockup Facility at NASA Johnson, will be used for human-in-the-loop testing, during which participants perform day-in-the-life walkthroughs and evaluate the interior design, crew training, procedure development, hardware checks, and in-flight issue resolution.
In addition, Starlab completed reviews of the system design architecture, procurement plan, and Northrop Grumman Cygnus spacecraft docking system design. In 2023, Northrop Grumman teamed up with Starlab to provide cargo logistics services and engineering consultation to support the commercial space station. These reviews included design configuration updates of solar arrays, docking ports, crew quarters, and more.
NASA supports the design and development of multiple commercial space stations through funded and unfunded agreements. Following the design and development phase, NASA plans to procure services from one or more companies as part of its strategy to become one of many customers for low Earth orbit stations.
Learn more about commercial space stations at:
www.nasa.gov/commercialspacestations
Keep Exploring Discover More Topics
Commercial Space Stations
Low Earth Orbit Economy
Commercial Space
Humans In Space
View the full article
-
By NASA
3 min read
NASA Citizen Science and Your Career: Stories of Exoplanet Watch Volunteers
Doing NASA Science brings many rewards. But can taking part in NASA citizen science help your career? To find out, we asked participants in NASA’s Exoplanet Watch project about their experiences. In this project, amateur astronomers work together with professionals to track planets around other stars.
First, we heard from professional software programmers. Right away, one of them told us about getting a new job through connections made in the project.
“I decided to create the exoplanet plugin, [for citizen science] since it was quite a lot of manual work to check which transits were available for your location. The exoplanet plugin and its users got me in contact with the Stellar group… Through this group, I got into contact with a company called OurSky and started working for them… the point is, I created a couple of plugins for free and eventually got a job at an awesome company.”
Another participant talked about honing their skills and growing their confidence through Exoplanet Watch.
“There were a few years when I wasn’t actively coding. However, Exoplanet Watch rekindled that spark…. Participating in Exoplanet Watch even gave me the confidence to prepare again for a technical interview at Meta—despite having been thoroughly defeated the first time I tried.”
Teachers and teaching faculty told us how Exoplanet Watch gives them the ability to better convey what scientific research is all about – and how the project motivates students!
“Exoplanet Watch makes it easy for undergraduate students to gain experience in data science and Python, which are absolutely necessary for graduate school and many industry jobs.”
“Experience with this collaborative work is a vital piece of the workforce development of our students who are seeking advanced STEM-related careers or ongoing education in STEM (Science, Technology, Engineering, & Mathematics) fields after graduation… Exoplanet Watch, in this way, is directly training NASA’s STEM workforce of tomorrow by allowing CUNY (The City University of New York) students to achieve the science goals that would otherwise be much more difficult without its resources.”
One aspiring academic shared how her participation on the science team side of the project has given her research and mentorship experience that strengthens her resume.
“I ended up joining the EpW team to contribute my expertise in stellar variability… My involvement with Exoplanet Watch has provided me with invaluable experience in mentoring a broad range of astronomy enthusiasts and working in a collaborative environment with people from around the world. … Being able to train others, interact in a team environment, and work independently are all critical skills in any work environment, but these specific experiences have also been incredibly valuable towards building my portfolio as I search for faculty positions around the USA.”
There are no guarantees, of course. What you get out of NASA citizen science depends on what you put in. But there is certainly magic to be found in the Exoplanet Watch project. As one student said:
“Help will always be found at Hogwarts, to those who need it.” Exoplanet Watch was definitely Hogwarts for me in my career as an astronomer!”
For more information about NASA and your career, check out NASA’s Surprisingly STEM series highlighting exciting and unexpected jobs at NASA, or come to NASA Career Day, a virtual event for students and educators. Participants must register by September 4, 2025. The interactive platform will be open from September 15-19, with live panels and events taking place on September 18.
Exoplanet Watch volunteer Bryan Martin
Credit: Bryan Martin
Share
Details
Last Updated Jul 16, 2025 Related Terms
Astrophysics Citizen Science Exoplanet Science Exoplanets Explore More
2 min read Hubble Snaps Galaxy Cluster’s Portrait
Article
5 days ago
8 min read NASA’s Webb Scratches Beyond Surface of Cat’s Paw for 3rd Anniversary
Article
6 days ago
2 min read Polar Tourists Give Positive Reviews to NASA Citizen Science in Antarctica
Article
1 week ago
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.