Members Can Post Anonymously On This Site
NASA’s TRACERS Studies Explosive Process in Earth’s Magnetic Shield
-
Similar Topics
-
By NASA
3 Min Read Space Station Cell Studies
Cells grown aboard the International Space Station. Credits: University of Connecticut Science in Space August 2025
Cells are the basic building blocks of all living things, from single-celled bacteria to plants and animals containing vast numbers of them. Cells have adapted for a wide variety of settings and functions. Nerve cells in humans and animals, for example, have long, thin extensions that rapidly transmit signals, while rigid, blocky cells support the structure of plants.
Cell biology is the study of cell structure, function, and behavior. For humans, scientists in this field explore the mechanisms of diseases from bone loss to cancer and work on developing treatments.
Cell-based experiments on The International Space Station help identify how spaceflight affects people and other living systems, with applications for future space exploration and life on Earth.
JAXA astronaut Satoshi Furukawa prepares to examine cells for Cell Gravisensing in the JAXA Confocal Microscope (COSMIC).NASA Recent experiments have revealed that individual animal cells react to the effects of gravity, but how they do so is largely unknown. Cell Gravisensing, an investigation from JAXA (Japan Aerospace Exploration Agency), examines the molecular mechanism behind the ability of cells to sense gravity. Results could support development of drugs to treat muscle atrophy and osteoporosis in space and on Earth.
Cardiovascular cells
Microscopic view of cells from the lining of blood vessels cultured for the STaARS BioScience-3 experiment. University of Florida In microgravity, some astronauts experience changes in their cardiovascular system, including reduced blood volume and diminished cardiac output. An earlier investigation, STaARS Bioscience-3, examined the mechanisms behind these changes at the cellular and genetic level. The research revealed that, after only three days of spaceflight, there were changes in the expression of more than 11,000 genes in blood vessel cells that could alter their functions. The results laid the groundwork for additional research into cell response to spaceflight that could help protect the health of crew members on future missions and people with cardiovascular diseases on Earth.
Neural cells
STaARS BioScience-4 examined microgravity’s effects on neural stem cells that give rise to central nervous system cells. Researchers found changes in production and consumption of energy and increased breakdown of cellular components in these cells, responses that likely enhance adaptation to microgravity. The finding also highlights the importance of providing astronauts with sufficient energy for cognitive and physiological function on future missions.
Fish cells
A preflight image of samples and sample chambers for the Fish Scales investigation. Mitchell/Prange Goldfish scales have many of the same proteins, minerals, and cell types as the bones of mammals. The JAXA Fish Scales investigation analyzed goldfish scales exposed to three times Earth’s gravity, simulated microgravity, and microgravity on orbit. Researchers determined that goldfish scales can be used as a model to help them understand how human bones respond to spaceflight.
Mouse cells
Research with model organisms like rodents has relevance to humans in space and makes significant contributions to understanding human aging, disease, and the effects of microgravity on biological and physical processes. JAXA’s Stem Cells studied how spaceflight affected the DNA and chromosomes of embryonic mouse stem cells, and their ability to develop into adult mice after return to Earth.
Researchers analyzed unaltered cells and cells given a mutation to increase responsiveness to radiation. They found no chromosomal differences between the unaltered space-flown cells and ground controls, but the mutated cells had more DNA abnormalities. The work could enhance the understanding of radiation effects on human cancer and improve risk assessment for long-duration missions to the Moon and Mars.
NASA astronauts Drew Morgan and Christina Koch work on rodent research hardware. NASA Another study used tissue samples from RR-1, which are available through NASA’s GeneLab open data repository. Analysis showed that the heart can adapt to the stress of spaceflight in just 30 days. The researchers observed genetic changes suggesting that this adaptation may facilitate survival in space and could have applications in treating heart disease in space and on Earth.
Keep Exploring Discover More Topics From NASA
Humans In Space
Latest News from Space Station Research
Space Station Research and Technology Tools and Information
Space Station Research Results
View the full article
-
By NASA
Credit: NASA NASA has selected six companies to produce studies focused on lower-cost ways to launch and deliver spacecraft of various sizes and forms to multiple, difficult-to-reach orbits.
The firm-fixed-price awards comprise nine studies with a maximum total value of approximately $1.4 million. The awardees are:
Arrow Science and Technology LLC, Webster, Texas Blue Origin LLC, Merritt Island, Florida Firefly Aerospace Inc., Cedar Park, Texas Impulse Space Inc., Redondo Beach, California Rocket Lab, Long Beach, California United Launch Services LLC, Centennial, Colorado “With the increasing maturity of commercial space delivery capabilities, we’re asking companies to demonstrate how they can meet NASA’s need for multi-spacecraft and multi-orbit delivery to difficult-to-reach orbits beyond current launch service offerings,” said Joe Dant, orbital transfer vehicle strategic initiative owner for the Launch Services Program at NASA’s Kennedy Space Center in Florida. “This will increase unique science capability and lower the agency’s overall mission costs.”
Each of the six companies will deliver studies exploring future application of orbital transfer vehicles for NASA missions:
Arrow will partner with Quantum Space for its study. Quantum’s Ranger provides payload delivery service as a multi-mission spacecraft engineered for rapid maneuverability and adaptability, enabling multi-destination delivery for missions from low Earth orbit to lunar orbit.
Blue Origin will produce two studies, including one for Blue Ring, a large, high-mobility space platform providing full-service payload delivery, on-board edge computing, hosting, and end-to-end mission operations. It uses hybrid solar-electric and chemical propulsion capability to reach geostationary, cislunar, Mars, and interplanetary destinations. The second is a New Glenn upper stage study.
Firefly’s line of Elytra orbital vehicles offers on-demand payload delivery, imaging, long-haul communications, and domain awareness across cislunar space. Firefly’s Elytra Dark is equipped to serve as a transfer vehicle and enable ongoing operations in lunar orbit for more than five years.
Impulse Space will produce two studies. The company provides in-space mobility with two vehicles, Mira and Helios. Mira is a high-thrust, highly maneuverable spacecraft for payload hosting and deployment, while Helios is a high-energy kick stage to rapidly deliver payloads from low Earth to medium Earth orbits, geostationary orbits and beyond.
Rocket Lab’s two studies will feature the upper stage of the company’s Neutron rocket, as well as a long-life orbital transfer vehicle based on its Explorer spacecraft. Both vehicles are equipped with their own propulsion systems and other subsystems for missions to medium Earth and geosynchronous orbit and deep space destinations like the Moon, Mars, and near-Earth asteroids.
United Launch Alliance will assess the cislunar mission capabilities of an extended-duration Centaur V upper stage. Centaur would be capable of directly delivering multiple rideshare spacecraft to two different orbital destinations in cislunar space, avoiding the need for an additional rocket stage or orbital transfer vehicle.
The studies will be complete by mid-September. NASA will use the findings to inform mission design, planning, and commercial launch acquisition strategies for risk-tolerant payloads, with a possibility of expanding delivery services to larger-sized payloads and to less risk-tolerant missions in the future.
NASA’s Launch Services Program selected providers through the agency’s VADR (Venture-Class Acquisition of Dedicated and Rideshare Launch Services) contract, which helps foster growth of the U.S. commercial launch market, enabling greater access to space at a lower cost for science and technology missions.
For more information about NASA’s Launch Services Program, visit:
https://www.nasa.gov/launch-services-program
-end-
Josh Finch
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov
Leejay Lockhart
Kennedy Space Center, Florida
321-747-8310
leejay.lockhart@nasa.gov
Share
Details
Last Updated Aug 05, 2025 LocationKennedy Space Center Related Terms
Partner With Us Commercial Space Kennedy Space Center Space Operations Mission Directorate View the full article
-
By NASA
Technicians have successfully installed two sunshields onto NASA’s Nancy Grace Roman Space Telescope’s inner segment. Along with the observatory’s Solar Array Sun Shield and Deployable Aperture Cover, the panels (together called the Lower Instrument Sun Shade), will play a critical role in keeping Roman’s instruments cool and stable as the mission explores the infrared universe.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
This video shows technicians installing two sunshields onto NASA's nearly complete Nancy Grace Roman Space Telescope on July 17. The large yet lightweight panels will block sunlight, keeping Roman’s instruments cool and stable as the mission explores the infrared universe.Credit: NASA/Sophia Roberts The team is on track to join Roman’s outer and inner assemblies this fall to complete the full observatory, which can then undergo further prelaunch testing.
“This shield is like an extremely strong sunblock for Roman’s sensitive instruments, protecting them from heat and light from the Sun that would otherwise overwhelm our ability to detect faint signals from space,” said Matthew Stephens, an aerospace engineer at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
The sunshade, which was designed and engineered at NASA Goddard, is essentially an extension of Roman’s solar panels, except without solar cells. Each sunshade flap is roughly the size of a garage door — about 7 by 7 feet (2.1 by 2.1 meters) — and 3 inches (7.6 centimeters) thick.
“They’re basically giant aluminum sandwiches, with metal sheets as thin as a credit card on the top and bottom and the central portion made up of a honeycomb structure,” said Conrad Mason, an aerospace engineer at NASA Goddard.
This design makes the panels lightweight yet stiff, and the material helps limit heat transfer from the side facing the Sun to the back—no small feat considering the front will be hot enough to boil water (up to 216 degrees Fahrenheit, or 102 degrees Celsius) while the back will be much colder than Antarctica’s harshest winter (minus 211 Fahrenheit, or minus 135 Celsius). A specialized polymer film blanket will wrap around each panel to temper the heat, with 17 layers on the Sun side and one on the shaded side.
The sunshade will be stowed and gently deploy around an hour after launch.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
In this time-lapse video, technicians manually deploy the Lower Instrument Sun Shield for NASA's Nancy Grace Roman Space Telescope. The test helps verify the panels will operate as designed in space.NASA/Sophia Roberts “The deploying mechanisms have dampers that work like soft-close hinges for drawers or cabinets, so the panels won’t slam open and rattle the observatory,” Stephens said. “They each take about two minutes to move into their final positions. This is the very first system that Roman will deploy in space after the spacecraft separates from the launch vehicle.”
Now completely assembled, Roman’s inner segment is slated to undergo a 70-day thermal vacuum test next. Engineers and scientists will test the full functionality of the spacecraft, telescope, and instruments under simulated space conditions. Following the test, the sunshade will be temporarily removed while the team joins Roman’s outer and inner assemblies, and then reattached to complete the observatory. The mission remains on track for launch no later than May 2027 with the team aiming for as early as fall 2026.
Click here to virtually tour an interactive version of the telescope Download high-resolution video and images from NASA’s Scientific Visualization Studio
The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Jul 31, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
Nancy Grace Roman Space Telescope Dark Energy Dark Matter Exoplanets Galaxies Goddard Space Flight Center Nebulae Sensing the Universe & Multimessenger Astronomy Stars The Universe Explore More
7 min read One Survey by NASA’s Roman Could Unveil 100,000 Cosmic Explosions
Article 2 weeks ago 3 min read NASA’s Roman Space Telescope Team Installs Observatory’s Solar Panels
Article 3 weeks ago 6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
Article 3 months ago View the full article
-
By Space Force
Vandenberg Space Force Base hosted a mission brief for NASA’s upcoming Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites mission.
View the full article
-
By NASA
NASA’s TRACERS (Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites) mission launched at 2:13 p.m. EDT atop a SpaceX Falcon 9 rocket at Space Launch Complex 4 East at Vandenberg Space Force Base in California. Credit: SpaceX NASA’s newest mission, TRACERS, soon will begin studying how Earth’s magnetic shield protects our planet from the effects of space weather. Short for Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites, the twin TRACERS spacecraft lifted off at 11:13 a.m. PDT (2:13 p.m. EDT) Wednesday aboard a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California.
“NASA is proud to launch TRACERS to demonstrate and expand American preeminence in space science research and technology,” said acting NASA Administrator Sean Duffy. “The TRACERS satellites will move us forward in decoding space weather and further our understanding of the connection between Earth and the Sun. This mission will yield breakthroughs that will advance our pursuit of the Moon, and subsequently, Mars.”
The twin satellites will fly one behind the other – following as closely as 10 seconds apart over the same location – and will take a record-breaking 3,000 measurements in one year to build a step-by-step picture of how magnetic reconnection changes over time.
Riding along with TRACERS aboard the Falcon 9 were NASA’s Athena EPIC (Economical Payload Integration Cost), PExT (Polylingual Experimental Terminal), and REAL (Relativistic Electron Atmospheric Loss) missions – three small satellites to demonstrate new technologies and gather scientific data. These three missions were successfully deployed, and mission controllers will work to contact them over the coming hours and days.
Ground controllers for the TRACERS mission established communications with the second of the two spacecraft at 3:43 p.m. PDT (6:43 p.m. EDT), about 3 hours after it separated from the rocket. During the next four weeks, TRACERS will undergo a commissioning period during which mission controllers will check out their instruments and systems.
Once cleared, the twin satellites will begin their 12-month prime mission to study a process called magnetic reconnection, answering key questions about how it shapes the impacts of the Sun and space weather on our daily lives.
“NASA’s heliophysics fleet helps to safeguard humanity’s home in space and understand the influence of our closest star, the Sun,” said Joe Westlake, heliophysics division director at NASA Headquarters in Washington. “By adding TRACERS to that fleet, we will gain a better understanding of those impacts right here at Earth.”
The two TRACERS spacecraft will orbit through an open region in Earth’s magnetic field near the North Pole, called the polar cusp. Here, TRACERS will investigate explosive magnetic events that happen when the Sun’s magnetic field – carried through space in a stream of solar material called the solar wind – collides with Earth’s magnetic field. This collision creates a buildup of energy that causes magnetic reconnection, when magnetic field lines snap and explosively realign, flinging away nearby particles at high speeds.
Flying through the polar cusp allows the TRACERS satellites to study the results of these magnetic explosions, measuring charged particles that race down into Earth’s atmosphere and collide with atmospheric gases – giving scientist the tools to reconstruct exactly how changes in the incoming solar wind affect how, and how quickly, energy and particles are coupled into near-Earth space.
“The successful launch of TRACERS is a tribute to many years of work by an excellent team,” said David Miles, TRACERS principal investigator at the University of Iowa. “TRACERS is set to transform our understanding of Earth’s magnetosphere. We’re excited to explore the dynamic processes driving space weather.”
Small Satellites Along for Ride
Athena EPIC is a pathfinder mission that will demonstrate NASA’s use of an innovative and configurable commercial SmallSat architecture to improve flexibility of payload designs, reduce launch schedule, and reduce overall costs in future missions, as well as the benefits of working collaboratively with federal partners. In addition to this demonstration for NASA, once the Athena EPIC satellite completes its two-week commissioning period, the mission will spend the next 12 months taking measurements of outgoing longwave radiation from Earth.
The PExT demonstration will test interoperability between commercial and government communication networks for the first time by demonstrating a wideband polylingual terminal in low Earth orbit. This terminal will use software-defined radios to jump between government and commercial networks, similar to cell phones roaming between providers on Earth. These terminals could allow future missions to switch seamlessly between networks and access new commercial services throughout its lifecycle in space.
The REAL mission is a CubeSat that will investigate how energetic electrons are scattered out of the Van Allen radiation belts and into Earth’s atmosphere. Shaped like concentric rings high above Earth’s equator, the Van Allen belts are composed of a mix of high-energy electrons and protons that are trapped in place by Earth’s magnetic field. Studying electrons and their interactions, REAL aims to improve our understanding of these energetic particles that can damage spacecraft and imperil astronauts who pass through them.
The TRACERS mission is led by David Miles at the University of Iowa with support from the Southwest Research Institute in San Antonio, Texas. NASA’s Heliophysics Explorers Program Office at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, manages the mission for the Heliophysics Division at NASA Headquarters in Washington. The University of Iowa, Southwest Research Institute, University of California, Los Angeles, and the University of California, Berkeley, all lead instruments on TRACERS.
The Athena EPIC mission is led by NASA’s Langley Research Center in Hampton, Virginia, and is a partnership between National Oceanic and Atmospheric Administration, U.S. Space Force, and NovaWurks. Athena EPIC’s launch is supported by launch integrator SEOPS. The PExT demonstration is managed by NASA’s SCaN (Space Communications and Navigation) program in partnership with Johns Hopkins Applied Physics Laboratory, with launch support by York Space Systems. The REAL project is led by Dartmouth College in Hanover, New Hampshire, and is a partnership between Johns Hopkins Applied Physics Laboratory, Montana State University, and Boston University. Sponsored by NASA’s Heliophysics Division and CubeSat Launch Initiative, it was included through launch integrator Maverick Space Systems.
NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida, manages the VADR (Venture-class Acquisition of Dedicated and Rideshare) contract.
To learn more about TRACERS, visit:
https://nasa.gov/tracers
-end-
Abbey Interrante / Karen Fox
Headquarters, Washington
301-201-0124 / 202-358-1600
abbey.a.interrante@nasa.gov / karen.c.fox@nasa.gov
Sarah Frazier
Goddard Space Flight Center, Greenbelt, Maryland
202-853-7191
sarah.frazier@nasa.gov
Share
Details
Last Updated Jul 23, 2025 LocationNASA Headquarters Related Terms
TRACERS Earth Science Science Mission Directorate View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.